Ll

Aqua-Duct Documentation

Release 0.5.9
Tomasz Magdziarz Karolina Mitusinska
Agata Raczynska Artur Goéra

Mar 13, 2018

CONTENTS

1 Aqua-Duct installation guide 1
L1 OVEIVIEW . . . o o o e e e e e e e e e e e e e e e 1
1.2 Troubleshooting e e e e 1
1.3 Requirements i i i i e e e e e e e e 1

1.3.1 Software-wise reqUIrements v v v v v vt e e e e e e e e e e 1
1.3.2 Hardware-wise reqUIrements v v v v v v v vt e e e e e e e e e 2
1.4 Installation L L e e e e e e e e e e 2
1.4.1 Generic Python installation L 2
142 GNU/LINUX 0ottt e e e e e e e 2
1.4.3 macOS . . . e e e e e e 3
144 WIndowsS e e e e e 4
1.45 OpenBSD e e 5
2 Valve manual 7
2.1 Valve InvOCation o L oo e e e e e e e e e e e e e e e e e 7
2110 USage . . . o e e e e e e e e e e 7
2.1.2 Configuration file template L L 8
2.1.3 Valvecalculation Tun e e e e e e e e e e e e e e e 8
2.2 Howdoes Valve work e e e e e e e e e 9
2.2.1 Traceableresidues e 9
222 Rawpaths L e e e e e e 11
223 Separatepaths 11
2.2.4 Clusterization of inlets e 12
225 Passingpaths e 14
226 ANalysSiS e e e e e e e e e e e e e 14
2277 Visualization e e e e e e e e e e e e 19

3 Configuration file options 23
3.1 Sectionglobal e e e e 23
3.2 Common settings of Stage SECtIONS v v v v v v v et e e e e e e e e e e e e e 24
3.3 Stage traceable_residues 24
34 Stageraw_paths 25
3.5 Stageseparate_paths 26
3.6 Stage inlets_clusterization e 27
3.7 StageanalySis e e e e e 27
3.8 Stagevisualize e 27
3.9 Clusterization SECHONS v v v v v i e 29

3.0.1 barber e e e e e e e e e 30
392 dbscanl L e e 30
3.93 affprop e e e e e 31
3.94 meanshift 31
395 birch. . . . e 32
396 kmeans e e e e e e e e e e 32
3,10 Smooth Section o . e e e e e e e e e e e e e e e e 32

4 Valve tutorial

4.1 Valve Invocation e e e e e e e e e
4.2 Testdata e e e e e e e
4.3 Inspect your Systemo e e e e e e e e e
43.1 Create Object definition o v i v it i e e e e e e e e e e
4.3.2 Create Scope definition o i v i i e e e e e e e e e e
4.4 Prepareconfigfile e e e e
45 RunValve o e e e e e e e
4.5.1 Visualinspection L e e
452 Clusterization ot v it e e e e e e e e e
453 Analysistables L e
4.6 Feedback e
S aquaduct
5.1 aquaductpackage L e e e

5.1.1 Subpackages .
5.1.2 Module contents

6 Aqua-Duct changelog
Python Module Index

Index

33
33
33
33
33
34
34
34
34
34
34
34

37
37
37
73

75

77

79

CHAPTER
ONE

AQUA-DUCT INSTALLATION GUIDE

1.1 Overview

Aqua-Duct software is software written in Python (CPython) and comprises of two elements:
1. aquaduct - a Python package,
2. valve - a script that uses aqguaduct to perform calculations.

Download

You can download Aqua-Duct packages directly from Aqua-Duct homepage. This page includes older versions
of Aqua-Duct as well as development version.

If you follow this installation guide you will install current release.

1.2 Troubleshooting

If you encounter any problems with installation do not hesitate to contact us at info@aquaduct.pl. We are RE-
ALLY willing to help!

Please, provide us with us much info as you can. In particular try to include following information:
* Operating system’s name and version, and CPU architecture (if relevant).
* Python version.
* Command(s) you have used for installation.

* Any error/warning/info message(s) that emerged during or after installation.

1.3 Requirements

1.3.1 Software-wise requirements

aquaduct
e numpy >= 1.10.0
e scipy >=0.17.1
e scikit-learn >=0.16.0
e MDAnalysis[amber] >= 0.16.0, < 0.17.0
* joblib>=0.10

http://aquaduct.pl
mailto:info@aquaduct.pl

Aqua-Duct Documentation, Release 0.5.9

1.3.2 Hardware-wise requirements

Aqua-Duct should work on every machine on which you can install the above mentioned software. On computers
older than 10 years it may work very slow though. We recommend 64bit SMP architecture, with at least 4GB
RAM (32 GB RAM is recommended).

1.4 Installation

1.4.1 Generic Python installation

The easiest way to install Aqua-Duct is to install Python 2.7 and use following command:

’pip install aquaduct

If pip is not available try to install it by typing:

’easy_install pip

Depending on the settings of your system you can prepend the above command with sudo or doas or do user
installation:

sudo
sudo pip install aquaduct

doas
doas pip install aquaduct

'user' installation
pip install aquaduct —--user

It is also good idea to try to install Aqua-Duct using virtualenv:

virtualenv aquaduct_installation
cd aquaduct_installation

. bin/activate

pip install agquaduct

1.4.1.1 Installation of PyMOL

Under most modern GNU/Linux distributions PyYMOL is available as a package in repositories. For example if
you are under Ubuntu/Debian you can install it by following command:

sudo apt-get install pymol

Under Windows there are several ways to install PyMOL, for more details see PyMOL web site.

Instructions for macOS and OpenBSD are in appropriate sections below.

1.4.2 GNU/Linux

Installation was tested on limited number of GNU/Linux systems. On the most of modern installations you can
simply follow generic instructions, for example under Ubuntu 16.04 you can type:

sudo pip install aquaduct

2 Chapter 1. Aqua-Duct installation guide

http://pymol.org

Aqua-Duct Documentation, Release 0.5.9

1.4.2.1 NetCDF4 & MDAnNalysis installation Ubuntu 14.04

Other systems may require additional work, in particular installation of NetCDF4 is sometimes cumbersome.
Following is an example how to install all required packages under Ubuntu 14.04:

install required python packages
sudo apt-get install python-dev python-pip python-numpy python-scipy python-
—matplotlib python-scikits-learn

install necessary libraries and git - all required to compile netCDF4
sudo apt-get -y install libnetcdf-dev libhdf5-dev git

clone netcdf4 python repository

git clone https://github.com/Unidata/netcdf4-python.git
cd to cloned repository

cd netcdf4-python

modify setup.cfg to add paths of hdf5 and netcdf4 libraries
sed -i '/\[directories\]/a \

HDF5 dir = /usr/lib \

HDF5_libdir = /usr/lib \

HDF5_incdir /usr/include \

netCDF4 _dir = /usr/lib \

netCDF4_libdir = /usr/lib \

netCDF4_incdir = /usr/include' setup.cfg

run setup.py

sudo python setup.py install

install MDAnalysis
sudo pip install "MDAnalysis[amber]==0.16.2"

If everything went fine you can follow generic instructions.

1.4.2.2 SciPy update and Ubuntu/Debian

Debian (and Ubuntu) uses strange approach to Python installation. To install newer version of SciPy (if required)
try following procedure:

install libraries required for SciPy compilation
apt-get build-dep python-scipy

install SciPy
easy_install-2.7 —--upgrade scipy

Warning: The above procedure will remove current SciPy from easy-install.pth file.

1.4.3 macOS

Aqua-Duct installation was tested on macOS Sierra and is quite straightforward. It can be installed either with
existing system Python or with custom Python installation. In both cases one have to install Xcode for the App
Store.

1.4.3.1 System native Python

sudo easy_install pip
sudo pip install aquaduct

1.4. Installation 3

Aqua-Duct Documentation, Release 0.5.9

The drawback of using system Python installation is a lack of PyMOL. It should be, however, relatively easy to
compile PyMOL on your own. Try to follow compilation instruction under BSD systems.

1.4.3.2 Custom Python

This is recommended way of Aqua-Duct installation. If you do not have custom Python installation you can get it
by using one of package managers available for macOS, for example homebrew. With this package manager you
can do following:

brew install python
sudo easy_install pip
sudo pip install aquaduct

Next, you can install PyMOL.:

brew install pymol
brew cask install xquartz

Once XQuartz is installed you should reboot. The above procedure installs PyMOL, however, PyMOL Python
modules are not visible. To fix it you can issue following commands:

cd /usr/local/lib/python2.7/site-packages
sudo 1ln -s /usr/local/Cellar/pymol/*/libexec/lib/python2.7/site-packages/* ./

The above instruction assumes that you are using brew and you have only one PyMOL installation.

1.4.4 Windows
Installation under Windows is also possible. The limiting factor is MDAnalysis which is not officially available
under Windows yet. You can, however, install Cygwin and perform Aqua-Duct installation in Cygwin.
First, start with Cygwin installation. During the setup select following packages:
* python (2.7)
* python-devel (2.7)
* python-cython
¢ libnetcdf-devel
libhdf5-devel

* liblapack-devel
* libopenblas
* python-numpy
* python-six

Another key component that have to be installed is C, C++ and Fortran compilers. You can simply install gcc-g++
and gce-fortran packages as a first choice, select following packages:

e gce-g++
* gcc-fortran

Once Cygwin is installed with all required libraries you can perform following steps:

install pip
easy_install-2.7 pip

First, try to install SciPy:

4 Chapter 1. Aqua-Duct installation guide

http://brew.sh/
https://cygwin.com/

Aqua-Duct Documentation, Release 0.5.9

install SciPy
pip install scipy

If you encounter any problems related to missing xlocale.h header file try the following workaround:

prepare fake xlocale.h
In -s /usr/include/locale.h xlocale.h
export CFLAGS="I"$(pwd)

install SciPy
pip install scipy

Note: The above procedure for SciPy installation might not be optimal. For more information please got to SciPy
web page.

Now, install scikit-learn and then Aqua-Duct:

install scikit-learn
pip install scikit-learn

finally, install aquaduct
pip install agquaduct

1.4.5 OpenBSD

Aqua-Duct can be also installed under OpenBSD (5.9 and 6.0 amd64). NetCDF-c version 4 has to be installed as
OpenBSD ships only netCDF in version 3. First, install hdf5 library and GNU make:

install hdf5 and GNU make
pkg_add hdf5 gmake

Next, download netCDF sources. Version 4.2.1.1 works out of the box but is a bit outdated. Visit NetCDF
web page and select version of your choice. Older versions are available in the FTP archive. Once netCDF is
downloaded and extracted go to the source directory and try following procedure:

set LD and CPP flags
export LDFLAGS=-L/usr/local/lib
export CPPFLAGS=-I/usr/local/include

configure project
./configure -—-enable-shared —-enable-dap --disable-doxygen -—-enable-netcdf-4 ——
—prefix=/path/to/netCDF4/1ib

make and install
gmake
gmake install

You may now install py-scipy package:

’pkg_add py—-scipy

Install pip if it is missing:

’ pkg_add py-pip

Install netCDF4 Python:

1.4. Installation 5

https://www.scipy.org/
https://www.scipy.org/
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
ftp://ftp.unidata.ucar.edu/pub/netcdf/old/

Aqua-Duct Documentation, Release 0.5.9

define netcdf-4 installation directory
export NETCDF4_DIR=/path/to/netCDF4/1ib
pip2.7 install netCDF4

At this point you can follow generic Python instructions, type:

pip2.7 install aquaduct

1.4.5.1 PyMOL at OpenBSD
According to our knowledge it is possible to install PyYMOL 1.4.1 and it is sufficient to work with Aqua-Duct. Go
to SourceForge PyMOL download page and download, save, and extract sources.

PyMOL requires Python Mega Widgets. Download, for example Pmw 1.3.3b from SourceForge Pmw download
page. Extract it and install by:

’python2.7 setup.py install

TKinter (2.7) and several other packages are also required:

’pkg_add python-tkinter freeglut glew png

Next, go to the extracted PyMOL sources open setup.py and modify inc_dirs variable at line 129 by adding
following paths:

"/usr/X11R6/include/freetype2",
"/usr/X11R6/include",
"/usr/local/include",

Now, you can build and install PyMOL by typing following commands:

python2.7 setup.py build
python2.7 setup.py install
python2.7 setup2.py install
cp pymol /usr/local/bin

PyMOL can be run by typing pymol or can be used as Python module.

1.4.5.2 Other BSDs

Installation on other BSDs might be easier. For example, Python netCDF4 is available in ports of FreeBSD and
DragonFlyBSD. Try to install it and SciPy, then proceed to generic Python installation instructions.

If you are using NetBSD or other BSD try to follow OpenBSD instructions.

6 Chapter 1. Aqua-Duct installation guide

https://sourceforge.net/projects/pymol/files/pymol/
https://sourceforge.net/projects/pmw/files/Pmw/
https://sourceforge.net/projects/pmw/files/Pmw/

CHAPTER
TWO

VALVE MANUAL

Valve application is a driver that uses aguaduct module to perform analysis of trajectories of selected residues
in Molecular Dynamics simulation.

2.1 Valve invocation

Once aquaduct module is installed (see Aqua-Duct installation guide) properly on the machine, Valve is avail-
able as valve.py command line tool.

2.1.1 Usage

Basic help of Valve usage can be displayed by following command:

valve.py ——help

It should display following information:

usage: valve.py [-h] [--debug] [--debug-file DEBUG_FILE]
[-—dump-template-config] [-t THREADS] [-c CONFIG_FILE] [-—-sps]
[-—max—frame MAX_FRAME] [--min-frame MIN_FRAME]
[-—step—-frame STEP_FRAME] [--sandwich] [--cache-dir CACHEDIR]
[-—cache-mem] [--version] [-—-license]

Valve, Aquaduct driver

optional arguments:
-h, ——-help show this help message and exit
——debug Prints debug info. (default: False)
——-debug-file DEBUG_FILE
Debug log file. (default: None)
——dump-template-config
Dumps template config file. Suppress all other output

or actions. (default: False)

-t THREADS Limit Aqua-Duct calculations to given number of
threads. (default: None)

-c CONFIG_FILE Config file filename. (default: None)

—-—sps Use single precision to store data. (default: False)

——max—frame MAX_ FRAME
Maximal number of frame. (default: None)
——min-frame MIN_FRAME
Minimal number of frame. (default: None)
——step—-frame STEP_FRAME
Frames step. (default: None)
——-sandwich Sandwich mode for multiple trajectories. (default:
False)
——cache—-dir CACHEDIR Directory for coordinates caching. (default: None)

Aqua-Duct Documentation, Release 0.5.9

——cache—-mem Switch on memory caching. (default: False)
——version Prints versions and exits. (default: False)
——license Prints short license info and exits. (default: False)

2.1.2 Configuration file template

Configuration file used by Valve is of moderate length and complexity. It can be easily prepared with a template
file that can be printed by Valve. Use following command to print configuration file template on the screen:

’valve.py ——dump-template-config

Configuration file template can also be easily saved in to a file with:

’valve.py ——dump-template-config > config.txt

Where config.txt is a configuration file template.

For detailed description of configuration file and available options see Configuration file options.

2.1.3 Valve calculation run

Once configuration file is ready Valve calculations can be run with a following simple command:

valve.py -c config.txt

Some of Valve calculations can be run in parallel. By default all available CPU cores are used. This is not always
desired - limitation of used CPU cores can be done with —t option which limits number of concurrent threads
used by Valve. If it equals 1 no parallelism is used.

Note: Specifying number of threads greater then available CPU cores is generally not optimal.

However, in order to maximize usage of available CPU power it is recommended to set it as number of cores +
1. The reason is that Valve uses one thread for the main process and the excess over one for processes for parallel
calculations. When parallel calculations are executed the main thread waits for results.

Note: Options ——min-frame, ——max—frame, and ——step—-frame can be used to limit calculations to
specific part of trajectory. For example, to run calculations for 1000 frames starting from frame 5000 use fol-
lowing options: —-min-frame 4999 --max-frame 5999; to run calculations for every 5th frame use:
——step—-frame 5.

2.1.3.1 Single precision storage

Most of the calculation is Valve is performed by NumPy. By default, NumPy uses double precision floats. Valve
does not change this behavior but has special option ——sps which forces to store all data (both internal data stored
in RAM and on the disk) in single precision. This spare a lot of RAM and is recommended what you perform
calculation for long trajectories and you have limited amount of RAM.

2.1.3.2 Cache

Storage of coordinates for all paths for very long MD trajectories requires huge amount of RAM. User can de-
cide whether aguaduct should store coordinates in memory or in separated directory. Option ——cache-mem
instruct Valve to store coordinates in RAM; ——cache—-dir stores coordinates in selected directory. If neither of
both options is selected, coordinates are calculated on demand.

8 Chapter 2. Valve manual

Aqua-Duct Documentation, Release 0.5.9

Note: If no cache is used (memory or dir) Master paths cannot be calculated.

2.1.3.3 Sandwich

Trajectory data can be provided as several files. By default these files are processed in sequential manner making
one long trajectory. If option ——sandwich is used trajectory files are read as layers. For each layer, search of
traceable residues is done separately (stage I and II) but processing and analysis (stage IIL, IV, V, and VI) are done
for all paths simultaneously. Usage of ——sandwich option is further referenced as sandwich mode.

2.1.3.4 Debugging

Valve can output some debug information. Use ——-debug to see all debug information on the screen or use
-—debug-£file with some file name to dump all debug messages to the given file. Beside debug messages
standard messages will be saved in the file as well.

2.2 How does Valve work

Application starts with parsing input options. If ——help or ——dump-template-config options are used
appropriate messages are printed on the screen and Valve quits with signal 0.

Note: In current version Valve does not check the validity of the config file.

If config file is provided (option —c) Valve parse it quickly and regular calculations starts according to its content.
Calculations performed by Valve are done in six stages described in the next sections.

2.2.1 Traceable residues

In the first stage of calculation Valve finds all residues that should be traced and appends them to the list of
traceable residues. 1t is done in a loop over all frames. In each frame residues of interest are searched and
appended to the list but only if they are not already present on the list. In sandwich_option mode this is repeated
for each layer.

The search of traceable residues is done according to user provided specifications. Two requirements have to be
met to append residue to the list:

1. The residue has to be found according to the object definition.
2. The residue has to be within the scope of interest.

The object definition encompasses usually the active site of the protein (or other region of interest of macro-
molecule in question). The scope of interest defines, on the other hand, the boundaries in which residues are
traced and is usually defined as protein.

Since aguaduct in its current version uses MDAnalysis Python module for reading, parsing and searching of
MD trajectory data, definitions of object and scope have to be given as its Selection Commands.

2.2.1.1 Object definition

Object definition has to comprise of two elements:
1. It has to define residues to trace.

2. It has to define spatial boundaries of the object site.

2.2. How does Valve work 9

http://www.mdanalysis.org/

Aqua-Duct Documentation, Release 0.5.9

For example, proper object definition could be following:

(resname WAT) and (sphzone 6.0 (resnum 99 or resnum 147))

It defines WAT as residues that should be traced and defines spatial constrains of the object site as spherical zone
within 6 Angstroms of the center of masses of residues with number 99 and 147.

2.2.1.2 Scope definition
Scope can be defined in two ways: as object but with broader boundaries or as the convex hull of selected molecular
object.

In the first case definition is very similar to object and it has to follow the same limitations. For example, proper
scope definition could be following:

resname WAT and around 2.0 protein

It consequently has to define WAT as residues of interest and defines spatial constrains: all WAT residues that are
within 2 Angstroms of the protein.

If the scope is defined as the convex hull of selected molecular object (which is recommended), the definition
itself have to comprise of this molecular object only, for example protein. In that case the scope is interpreted
as the interior of the convex hull of atoms from the definition. Therefore, traceable residues would be in the scope
only if they are within the convex hull of atoms of protein.

Convex hulls of macromolecule atoms

AQ uses quickhull algorithm for convex hulls calculations (via SciPy class scipy.spatial.ConvexHull,
see also http://www.qghull.org/ and original publication The quickhull algorithm for convex hulls).

Convex hull concept is used to check if traced molecules are inside of the macromolecule. Convex hull can
be considered as rough approximation of molecular surface. Following picture shows schematic comparison of
convex hull and solvent excluded surface (SES):

a) b)

(=

Convex hull (red shape) of atoms (blue dots with VAW spheres) and SES (blue line): a) convex hull and SES
cover roughly the same area, convex hull approximates SES; b) movement of one atom dramatically changes SES,
however, interior of the molecule as approximated by convex hull remains stable.

No doubts, convex hull is a very rough approximation of SES. It has, however, one very important property
when it is used to approximate interior of molecules: its interior does not considerably depend on the molecular
conformation of a molecule (or molecular entity) in question.

10 Chapter 2. Valve manual

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html#scipy.spatial.ConvexHull
http://www.qhull.org/
http://dx.doi.org/10.1145/235815.235821

Aqua-Duct Documentation, Release 0.5.9

2.2.2 Raw paths

The second stage of calculations uses the list of all traceable residues from the first stage and for each residue in
each frame two checks are performed:

1. Is the residue in the scope (this is always calculated according to the scope definition).

2. Is the residue in the object. This information is partially calculated in the first stage and can be reused in the
second. However, it is also possible to recalculate this data according to the new object definition.

For each of the traceable residues a special Path object is created which stores frames in which a residue is in
scope or in object.

Note: Residue is in object only if it is also in scope.

2.2.3 Separate paths

The third stage uses collection of Path objects to create Separate Path objects. Each Path comprise data for one
residue. It may happen that the residue enters and leaves the scope and the object many times over the entire MD.
Each such event is considered by Valve as a separate path.

There are two types of Separate Paths:
e Object Paths
* Passing Paths

Object Paths are traces of molecules that visited Object area. Passing Paths are traces of molecules that entered
Scope but did not entered Object area.

Passing paths comprises of one part only. Each object path comprises of three parts:

1. Incoming - Defined as a path that leads from the point in which residue enters the scope and enters the object
for the first time.

2. Object - Defined as a path that leads from the point in which residue enters the object for the first time and
leaves it for the last time.

3. Outgoing - Defined as a path that leads from the point in which residue leaves the object for the last time
and leaves the scope.

It is also possible that incoming and/or outgoing part of the separate path is empty.

Note: Generation of Passing paths is optional and can be switched off.

Warning: Generation of Passing paths without redefinition of Object area in stage I and II may lead to false
results.

2.2.3.1 Auto Barber

After the initial search of Separate Path objects it is possible to run Auto Barber procedure which trims paths down
to the approximated surface of the macromolecule or other molecular entity defined by the user. This trimming is
done by creating collection of spheres that have centers at the ends of paths and radii equal to the distance for the
center to the nearest atom of user defined molecular entity. Next, parts of raw paths that are inside these spheres
are removed and separate paths are recreated.

Auto Barber procedure has several options, for example:

2.2. How does Valve work 11

Aqua-Duct Documentation, Release 0.5.9

 auto_barber allows to define molecular entity which is used to calculate radii of spheres used for trimming
raw paths.

 auto_barber_mincut allows to define minimal radius of spheres. Spheres of radius smaller then this value
are not used in trimming.

* auto_barber_maxcut allows to define maximal radius of spheres. Spheres of radius greater then this value
are not used in trimming.

* auto_barber_tovdw if set to True radii of spheres are corrected (decreased) by Van der Waals radius of the
closest atom.

See also options of separate_paths stage.

2.2.3.2 Smoothing

Separate paths can be optionally smoothed. Current aquaduct version allows perform soft smoothing only, i.e.
smoothing is used only for visualization purposes. Raw paths cannot be replaced by the smoothed.

Available methods

Aqua-Duct implements several smoothing methods:

1. Savitzky-Golay filter - SavgolSmooth - see also original publication Smoothing and Differentiation of
Data by Simplified Least Squares Procedures (doi:10.1021/ac60214a047).

Window smoothing - WindowSmooth

Distance Window smoothing - DistanceWindowSmooth

Active Window smoothing - ActiveWindowSmooth

Max Step smoothing - MaxStepSmooth

Window over Max Step smoothing - WindowOverMaxStepSmooth

Distance Window over Max Step smoothing - DistanceWindowOverMaxStepSmooth

® NSk » N

Active Window over Max Step smoothing - ActiveWindowOverMaxStepSmooth

For detailed information on available configuration options see configuration file smooth section description.

2.2.4 Clusterization of inlets

Each of the separate paths has beginning and end. If they are at the boundaries of the scope they are considered as
Inlets, i.e. points that mark where the traceable residues enters or leaves the scope. Clusters of inlets, on the other
hand, mark endings of tunnels or ways in the system which was simulated in the MD.

Clusterization of inlets is performed in following steps:

1. Initial clusterization: All inlets are submitted to selected clusterization method and depending on the method
and settings, some of the inlets might not be arranged to any cluster and are considered as outliers.

2. [Optional] Outliers detection: Arrangement of inlets to clusters is sometimes far from optimal. In this step,
inlets that do not fit to cluster are detected and annotated as outliers. This step can be executed in two
modes:

(a) Automatic mode: Inlet is considered to be an outlier if its distance from the centroid is greater than
mean distance + 4 * standard deviation of all distances within the cluster.

(b) Defined threshold: Inlet is considered to be an outlier if its minimal distance from any other point in
the cluster is greater than the threshold.

12 Chapter 2. Valve manual

http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047

Aqua-Duct Documentation, Release 0.5.9

3. [Optional] Reclusterization of outliers: It may happen that the outliers form actually clusters but it was not
recognized in initial clusterization. In this step clusterization is executed for outliers only and found clusters
are appended to the clusters identified in the first step. Rest of the inlets are marked as outliers.

2.2.4.1 Potentially recursive clusterization

Both [Initial clusterization and Reclustarization can be run in a recursive manner. If in the appropriate sections
defining clusterization methods option recursive_clusterization is used appropriate method is run for each cluster
separately. Clusters of specific size can be excluded from recursive clusterization (option recursive_threshold). It
is also possible to limit maximal number of recursive levels - option max_level.

For additional information see clusterization sections options.

2.2.4.2 Available methods

Aqua-Duct implements several clustering methods. The recommended method is barber method which bases on
Auto Barber procedure. Rest of the methods are implemented with sklearn.cluster module:

1. agquaduct.geom.cluster.BarberCluster - default for Initial clusterization. It gives excellent
results. For more information see barber clusterization method description.

2. MeanShift - see also original publication Mean shift: a robust approach toward feature space analysis
(doi:10.1109/34.1000236).

3. DBSCAN - default for Reclusterization of outliers, see also original publication A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise
4. AffinityPropagation - see also original publication Clustering by Passing Messages Between Data

Points (doi:10.1126/science.1136800)

5. KMeans - see also k-means++: The advantages of careful seeding, Arthur, David, and Sergei Vassilvitskii in
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial
and Applied Mathematics (2007), pages 1027-1035.

6. Birch - see also Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering
method for large databases and Roberto Perdisci JBirch - Java implementation of BIRCH clustering algo-
rithm.

For additional information see clusterization sections options.

2.2.4.3 Master paths

At the end of clusterization stage it is possible to run procedure for master path generation. First, separate paths
are grouped according to clusters. Paths that begin and end in particular clusters are grouped together. Next, for
each group a master path (i.e., average path) is generated in following steps:

1. First, length of master path is determined. Lengths of each parts (incoming, object, outgoing) for each
separate paths are normalized with bias towards longest paths. These normalized lengths are then used for
as weights in averaging not normalized lengths. Values for all parts are summed and resulting value is the
desired length of master path.

2. All separate paths are divided into chunks. Number of chunks is equal to the desired length of master path
calculated in the previous step. Lengths of separate paths can be quite diverse, therefore, for different paths
chunks are of different lengths.

3. For each chunk averaging procedure is run:
(a) Coordinates for all separate paths for given chunk are collected.
(b) Normalized lengths with bias toward longest paths for all separate paths for given chunk are collected.

(c) New coordinates are calculated as weighted average of collected coordinates. As weights collected
normalized lengths are used.

2.2. How does Valve work 13

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift
http://dx.doi.org/10.1109/34.1000236
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.1126/science.1136800
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch
http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://code.google.com/archive/p/jbirch
https://code.google.com/archive/p/jbirch

Aqua-Duct Documentation, Release 0.5.9

(d) In addition width of chunk is calculated as a mean value of collected coordinates mutual distances.
(e) Type of chunk is calculated as probability (frequency) of being in the scope.

4. Results for all chunks are collected, types probability are changed to types. All data is then used to create
Master Path. If this fails no path is created.

More technical details on master path generation can be found in aquaduct.geom.master.
CTypeSpathsCollection.get_master._path () method documentation.

2.2.5 Passing paths

If Passing paths are allowed (see allow_passing_paths option in separate_paths configuration) they will
be generated using list of traceable residues from the first stage of calculations. In usual settings, where Object
and Scope definitions are the same in both I and II stage, this will result in relatively low number of passing paths.
In particular this will not show the real number of traced molecules that enter Scope during the simulation.

To get correct picture following options and settings have to be considered:
¢ Stage traceable_residues

— object should be broad enough to encompass all molecules that should be traced. For example,
if water is traced, ob ject definition could be following: resname WAT.

¢ Stage raw_paths

— In order to retain default Aqua-Duct behavior of tracing molecules that flow through Object area,
it have to be redefined to encompass the active site only - see Object definition discussion.

— clear_in_object_info should be set to True. Otherwise, traceable molecules will be
limited according to current object definition but Object boundaries from traceable_residues
stage will be used.

¢ Stage separate_paths
— allow_passing_paths should be set to True. This allows generation of passing paths.
Additionally, in stage inlets_clusterization following options could also be adjusted:

* exclude_passing_in_clusterization could be set to True. This will exclude passing paths
inlets from clusterization.

* If passing paths are not clustered they will be added as outliers. Option add_passing_to_clusters
allows to add some of passing paths inlets to already existing clusters. This is done by Auto Barber
method and therefore this option should define molecular entity used in Auto Barber procedure, for ex-
ample protein.

2.2.6 Analysis

Fifth stage of Valve calculations analyses results calculated in stages 1 to 4. Results of the analysis are displayed
on the screen or can be saved to text file and comprise of several parts.

2.2.6.1 General summary

Results starts with general summary.
* Title and data stamp.
* [Optional] Dump of configuration options.

¢ Frames window.

14 Chapter 2. Valve manual

Aqua-Duct Documentation, Release 0.5.9

¢ Names of traced molecules.

Note: If more than one name is on the list all consecutive sections of Analysis results are provided
for each name separately and, as well as, for all names.

* Number of traceable residues.
* Number of separate paths.
¢ Number of inlets.
* Number of clusters.
— Outliers flag, yes if they are present.

* Clustering history - a tree summarizing calculated clusters.

2.2.6.2 Clusters statistics

¢ Clusters summary - inlets.
— Summary of inlets clusters. Table with 4 columns:
1. Cluster: ID of the cluster. Outliers have 0.
2. Size: Size of the cluster.
3. INCOMING: Number of inlets corresponding to separate paths that enter the scope.
4. OUTGOING: Number of inlets corresponding to separate paths that leave the scope.
¢ Cluster statistics.
— Probabilities of transfers. Table with 7 columns:
1. Cluster: ID of the cluster. Outliers have 0.
2. IN-OUT: Number of separate paths that both enter and leave the scope by this cluster.
3. diff: Number of separate paths that:
+ Enter the scope by this cluster but leave the scope by another cluster, or
+ Enter the scope by another cluster but leave the scope by this cluster.
4. N: Number of separate paths that:
+ Enter the scope by this cluster and stays in the object, or
* Leaves the scope by this cluster after staying in the object.
5. IN-OUT_prob: Probability of IN-OUT.
6. diff_prob: Probability of diff.
7. N_prob: Probability of N.
— Mean lengths of transfers. Table with 8 columns:
1. Cluster: ID of the cluster. Outliers have 0.
X->Obj: Mean length of separate paths leading from this cluster to the object.
Obj->X: Mean length of separate paths leading from the object to this cluster.

p-value: p-value of ttest of comparing X->Obj and Obj->X.

A

X->ObjMin: Minimal value of length of separate paths leading from this cluster to the
object.

6. X->ObjMinID: ID of separate path for which X->ObjMin was calculated.

2.2. How does Valve work 15

Aqua-Duct Documentation, Release 0.5.9

7.

8.

Obj->XMin: Minimal value of length of separate paths leading from the object to this
cluster.

Obj->XMinID: ID of separate path for which Obj->XMin was calculated.

— Mean frames numbers of transfers. Table with 8 columns:

1.

A

o

Cluster: ID of the cluster. Outliers have 0.

X->0bj: Mean number of frames of separate paths leading from this cluster to the object.
Obj->X: Mean number of frames of separate paths leading from the object to this cluster.
p-value: p-value of ttest of comparing X->Obj and Obj->X.

X->0bjMin: Minimal value of number of frames of separate paths leading from this clus-
ter to the object.

X->ObjMinID: ID of separate path for which X->ObjMin was calculated.

Obj->XMin: Minimal value of number of frames of separate paths leading from the object
to this cluster.

Obj->XMinID: ID of separate path for which Obj->XMin was calculated.

Note:

Distributions of X->Obj and Obj->X might be not normal, #fest may result unrealistic values. This test

will be changed in the future releases.

2.2.6.3 Clusters types statistics

* Separate paths clusters types summary. Tables with 11 columns.

— Mean length of paths:

1.

AN

=~

10.

11.

CType: Separate path Cluster Type.

Size: Number of separate paths belonging to Cluster type.

Size %: Percentage of Size relative to the total number of separate paths.
Tot: Average total length of paths.

TotStd: Standard deviation of Tot.

Inp: Average length of incoming part of paths. If no incoming parts are available, NaN is
printed (not a number).

InpStd: Standard deviation of Inp.

Obj: Average length of object part of paths. If no incoming parts are available, NaN is
printed.

ObjStd: Standard deviation of Inp.

Out: Average length of outgoing part of paths. If no incoming parts are available, NaN is
printed.

OutStd: Standard deviation of Inp.

— Mean number of frames:

1.

A

CType: Separate path Cluster Type.

Size: Number of separate paths belonging to Cluster type.

Size %: Percentage of Size relative to the total number of separate paths.
Tot: Average total number of frames of paths.

TotStd: Standard deviation of Tot.

16

Chapter 2. Valve manual

Aqua-Duct Documentation, Release 0.5.9

6. Inp: Average total number of incoming part of paths. If no incoming parts are available,

NaN is printed (not a number).

7. InpStd: Standard deviation of Inp.

8. Obj: Average total number of object part of paths. If no incoming parts are available, NaN

is printed.

9. ObjStd: Standard deviation of Inp.

10. Out: Average total number of outgoing part of paths. If no incoming parts are available,

NaN is printed.
11. OutStd: Standard deviation of Inp.

Cluster Type of separate path

Clusters types (or CType) is a mnemonic for separate paths that leads from one cluster to another, including paths
that start/end in the same cluster or start/end in the Object area.

Each separate path has two ends: beginning and end. Both of them either belong to one of the clusters of inlets, or
are among outliers, or are inside the scope. If an end belongs to one of the clusters (including outliers) it has ID
of the cluster. If it is inside the scope it has special ID of N. Cluster type is an ID composed of IDs of both ends of
separate path separated by colon charter.

2.2.6.4 All separate paths data

 List of separate paths and their properties. Table with 20 columns.

1.
. RES: - Residue name.

O 00 3 N U B~ W

[\ I e e e e e e e T
SO O 0 NN N kA WD = O

ID: - Separate path ID.

. BeginF: Number of frame in which the path begins.

. InpF: Number of frame in which path begins Incoming part.

. ObjF: Number of frame in which path begins Object part.

. OutF: Number of frame in which path begins Outgoing part.

. EndF: Number of frame in which the path ends.

. TotL: Total length of path.

. InpL: Length of Incoming part. If no incoming part NaN is given.
. ObjL: Length of Object part.

. OutL: Length of Outgoing part. If no outgoing part NaN is given.
. TotS: Average step of full path.

. TotStdS: Standard deviation of TotS.

. InpS: Average step of Incoming part. If no incoming part NaN is given.
. InpStdS: Standard deviation of InpS.
. ObjS: Average step of Object part.

. ObjStdS: Standard deviation of ObjS.
. OutS: Average step of Outgoing part. If no outgoing part NaN is given.
. OutStdS: Standard deviation of OutS.
. CType: Cluster type of separate path.

2.2. How does Valve work

17

Aqua-Duct Documentation, Release 0.5.9

Separate path ID

Separate Path IDs are composed of three numbers separated by colon. First number is the layer number, if no
sandwich option is used it is set to 0. The second number is residue number. Third number is consecutive number
of the separate path made by the residue. Numeration starts with 0.

2.2.6.5 Frames dependent analysis

In addition to general summary Aqua-Duct calculates frames dependent parameters. Two types of values are
calculated: number of traced paths, and Object and Scope sizes. Results are saved in the additional CSV file or
are printed on the screen.

Calculated numbers of traced paths can be used to visualize behavior of the system in question. For example, one
can analyze number of paths is two different clusters:

—— 16
25 6
v 20
=
(]
@ 15]
o
=
€10
E=3
5_
ﬂ_
0 10000 20000 30000 40000 50000

MD frames

The above plot shows number of water molecules (or paths) in cluster 16 and 6 throughout the simulation. One
can observe that number of molecules in cluster 6 diminishes approximately in the middle. This kind of plot can
be easily generated with additional CSV data.

Number of traced paths

For each frame, numbers of traced paths are calculated for following categories:
1. Name of traced molecules - amo1 is used for all possible names.

2. Paths types (object for standard paths and passing for passing paths) - apaths is used for all possible
paths types.

3. Clusters and cluster types - aclusts is used for all possible clusters and act ypes is used for all possible
cluster types.

4. Part of paths. Possible values are: walk, in, object, out, and in_out. Where walk corresponds to
any part of path and in case of passing paths only this category is used; in, object, and out correspond
to incoming, object, and outgoing parts; in_out corresponds to sum of incoming and outgoing parts.

All the above listed categories are combined together, and the final number of calculated categories may be quite
big.

Size of Object and Scope

If option calculate_scope_object_size 1is set True and values of scope_chull and
object_chull correspond to appropriate molecular entities, Aqua-Duct calculates area and volume of Scope

18 Chapter 2. Valve manual

Aqua-Duct Documentation, Release 0.5.9

and Object. Calculated sizes are estimates as resulting from convex hull approximations.

2.2.7 Visualization
Sixth stage of Valve calculations visualizes results calculated in stages 1 to 4. Visualization is done with PyMOL.
Valve creates visualizations in two modes:

1. Two files are created: special Python script and archive with data. Python script can be simply started with
python, it automatically opens PyMol and loads all data from the archive. Optionally it can automatically
save PyMol session.

2. PyMol is automatically started and all data is loaded directly to PyMol workspace.
Molecule is loaded as PDB file. Other objects like Inlets clusters or paths are loaded as CGO objects.

2.2.7.1 Visualization script
By default Valve creates Python visualization script and archive with data files. This script is a regular Python

script. It does not depends on AQUA-DUCT. To run it, python2.7 and PyMol is required. If no save option is used
Valve saves visualization script as 6_visualize_results.py. To load full visualization call:

python 6_visualize_results.py ——help

usage: 6_visualize_results.py [-h] [-—save-session SESSION]
[--discard DISCARD] [-—-keep KEEP]
[-—force-color FC] [-—fast]

Aqua-Duct visualization script

optional arguments:
-h, ——-help show this help message and exit
—-—-save-session SESSION
Pymol session file name.

——discard DISCARD Objects to discard.

——-keep KEEP Objects to keep.

—-—force-color FC Force specific color.

-—fast Disable all objects while loading.

Option —-save-session allows to save PyMol session file. Once visualization is loaded session is saved and
PyMol closes. Option ——fast increases slightly loading of objects.

Option ——force—-color allows to change default color of objects. It accepts list of specifications comprised of
pairs ‘object name’ and ‘color name’. For example: 'scope_shape0 yellow cluster_1 blue'. This
will color scope_shape0 object in yellow and cluster_1 in blue:

python 6_visualize_results.py ——force-color 'scope_shapeO yellow cluster_1 blue'

Note: List of specifications has to be given in parentheses.

Note: List of specifications has to comprise of full objects’ names.

Note: Currently, ——force-color does not allow to change color of molecules. It can be done in PyMol.

Options ——keep and ——discard allows to select specific objects for visualization. Both accept list of names
comprising of full or partial object names. Option ——keep instructs script to load only specified objects, whereas,

2.2. How does Valve work 19

Aqua-Duct Documentation, Release 0.5.9

-—discard instructs to skip specific objects. For example to keep shapes of object and scope, molecule and
clusters only one can call following:

’python 6_visualize_results.py ——keep 'shape molecule cluster'

To discard all raw paths:

’python 6_visualize_results.py —-discard 'raw'

Options can be used simultaneously, order does matter:

1.

2.

If ——keep is used first, objects are not displayed if they are not on the keep list. If they are on the list,
visualization script checks if they are on the discard list. If yes, objects are not displayed.

If ——discardis used first, objects are not displayed if they are on the discard list and are not on the keep
list.

For example, in order to display molecule, clusters, and only raw master paths, one can use following command:

python 6_visualize_results.py ——keep 'molecule cluster master' —--discard 'smooth'

Note:

Options ——keep and ——discard accepts both full and partial object names.

Note:

List of names has to be given in parentheses.

2.2.7.2 Visualization objects

Following is a list of objects created in PyMOL (all of them are optional). PyMOL object names given in bold
text or short explanation is given.

Selected frame of the simulated system. Object name: molecule plus number of layer, if no sandwich option
is used it becomes, by default, molecule0.

Approximate shapes of object and scope. Objects names object_shape and scope_shape plus number of
layer, if no sandwich option is used 0 is added by default.

Inlets clusters, each cluster is a separate object. Object name: cluster_ followed by cluster annotation:
outliers are annotated as out; regular clusters by ID.

List of cluster types, raw paths. Each cluster type is a separate object. Object name composed of cluster
type (colon replaced by underline) plus _raw.

List of cluster types, smooth paths. Each cluster type is a separate object. Object name composed of cluster
type (colon replaced by underline) plus _smooth.

All raw paths. They can be displayed as one object or separated in to Incoming, Object and Outgoing part.
Object name: all_raw, or all_raw_in, all_raw_obj, and all_raw_out.

All raw paths inlets arrows. Object name: all_raw_paths_io.

All smooth paths. They can be displayed as one object or separated in to Incoming, Object and Outgoing
part. Object name: all_smooth, or all_smooth_in, all_smooth_obj, and all_smooth_out.

All raw paths inlets arrows. Object name: all_raw_paths_io.

Raw paths displayed as separate objects or as one object with several states. Object name: raw_paths_ plus
number of path or raw_paths if displayed as one object.

Smooth paths displayed as separate objects or as one object with several states. Object name:
smooth_paths_ plus number of path or smooth_paths if displayed as one object.

20

Chapter 2. Valve manual

Aqua-Duct Documentation, Release 0.5.9

* Raw paths arrows displayed as separate objects or as one object with several states. Object name:
raw_paths_io_ plus number of path or raw_paths_io if displayed as one object.

* Smooth paths arrows displayed as separate objects or as one object with several states. Object name:
smooth_paths_io_ plus number of path or smooth_paths_io if displayed as one object.

2.2.7.3 Color schemes

Inlets clusters are colored automatically. Outliers are gray.

Incoming parts of paths are red, Outgoing parts are blue. Object parts in case of smooth paths are green and in
case of raw paths are green if residue is precisely in the object area or yellow if it leaved object area but it is not in
the Outgoing part yet. Passing paths are displayed in grey.

Arrows are colored in accordance to the colors of paths.

2.2. How does Valve work 21

Aqua-Duct Documentation, Release 0.5.9

22 Chapter 2. Valve manual

CHAPTER
THREE

CONFIGURATION FILE OPTIONS

Valve configuration file is a simple and plain text file. It has similar structure as INI files commonly used in one
of the popular operating systems and is compliant with Python module ConfigParser.

Configuration file comprises of several sections. They can be grouped into three categories. Names of sections are
in bold text.

1. Global settings:
* global
2. Stages options:
(a) traceable_residues
(b) raw_paths
(c) separate_paths
(d) inlets_clusterization
(e) analysis
(f) visualize
3. Methods options:
* smooth
¢ clusterization

¢ reclusteriation

3.1 Section global

This section allows settings of trajectory data and is reserved for other future global options.

Option | Default value | Description
top None Path to topology file. Aqua-Duct supports PDB, PRMTOP, PFS topology files.
trj None Path to trajectory file. Aqua-Duct supports NC and DCD trajectory files.

Option trj can be used to provide list of trajectory files separated by standard path separator ‘:’ on POSIX
platforms and ‘; > on Windows - see os.pathsep.

Note: Options top and trj are mandatory.

23

https://docs.python.org/2/library/configparser.html#module-ConfigParser
https://docs.python.org/2/library/os.html#os.pathsep

Aqua-Duct Documentation, Release 0.5.9

3.2 Common settings of stage sections

Stages 1-4 which perform calculations have some common options allowing for execution control and sav-

ing/loading data.

Option | Default value Description

execute | runonce Option controls stage execution. It can have one of three possible values: run,
runonce, and skip. If it is set to run calculations are always performed
and if dump is set dump file is saved. If it is set to runonce calculations are
performed if there is no dump file specified by dump option. If it is present
calculations are skipped and data is loaded from the file. If it is set to skip
calculations are skip and if dump is set data is loaded from the file.

dump [dump file name] | File name of dump data. It is used to save results of calculations or to load

previously calculated data - this depends on execute option. Default value of
this option depends on the stage and for stages 1 to 4 is one of the following
(listed in order):

 1_traceable_residues_data.dump

e 2_raw_paths_data.dump

* 3_separate_paths_data.dump

* 4_inlets_clusterization_data.dump

Stages 5-6 also uses execute option, however, since they do not perform calculations per se in stead of dump
option they use save.

Option | Default value Description

execute | run Option controls stage execution. It can have one of three possible values: run,
runonce, and skip. If it is set to run or runonce stage is executed and
results is saved according to save option. If it is set to skip stage is skipped.

save [save file name] File name for saving results. Default value of this option depends on the stage

and for stages 1 to 4 is one of the following (listed in order):
e 5_analysis_results.txt & 5_analysis_results.txt.csv
* 6_visualize_results.py & 6_visualize_results.tar.gz
Stage 5 saves .txt file with analysis results and, if requested, it saves addi-
tional . csv with various counts of traced molecules.
Stage 6 can save results in two different ways:
1. As Python script - extension . py plus companion archive .tar.gz,
2. As PyMOL session - extension .pse.

3.3 Stage traceable_residues

Option Default value Description

scope None Definition of Scope of interest. See also Scope definition.

scope_convexhull True Flag to set if Scope is direct or convex hull definition.

scope_everyframe False Flag to set Scope evaluation mode. If set True Scope is evaluated
in every frame. This make sense if the definition is complex and
depends on distances between molecular entities.

object None Definition of Object of interest. See also Object definition.

Note: Options scope and object are mandatory.

24

Chapter 3. Configuration file options

Aqua-Duct Documentation, Release 0.5.9

3.4 Stage raw_paths

This stage also requires definition of the Scope and Object. If appropriate settings are not given, settings from the

previous stage are used.

Option

Default value

Description

scope

None

Definition of Scope of interest. See also Scope definition. 1f
None value form previous stage is used.

scope_convexhull None Flag to set if the Scope is direct or convex hull definition.

scope_everyframe False Flag to set Scope evaluation mode. If set True Scope is evaluated
in every frame. This make sense if the definition is complex and
depends on distances between molecular entities. If None value
from previous stage is used.

object None Definition of Object of interest. See also Object definition. 1If
None value from the previous stage is used

clear_in_object_info | False If it is set to True information on occupation of Object site by

traceable residues calculated in the previous stage is cleared and
have to be recalculated. This is useful if definition of Object was
changed.

3.4. Stage raw_paths

25

Aqua-Duct Documentation, Release 0.5.9

3.5 Stage separate_paths

Option

Default value

Description

discard_empty_paths

True

If set to True empty paths are discarded.

sort_by_id

True

If set to True separate paths are sorted by ID. Otherwise
they are sorted in order of appearance.

discard_short_paths

20

This option allows to discard paths which are shorter than
the threshold which is defined as total number of frames.

discard_short_object

2.0

This option allows to discard paths which objects are
shorter than the threshold which is defined as total length
in metric units.

discard_short_logic

or

If both discard_short_paths and
discard_short_object options are used, this
option allows to set combination logic. If it is set or a
path is discarded if any of discard criterion is met. If it is
set and both criteria have to be met to discard path.

auto_barber

None

This option allows to select molecular entity used in
Auto Barber procedure. See also Auto Barber and
barber_with_spheres ().

auto_barber_mincut

None

Minimal radius of spheres used in Auto Barber. If a sphere
has radius smaller then this value it is not used in AutoBar-
ber procedure. This option can be switched off by setting
it to None.

auto_barber_maxcut

2.8

Maximal radius of spheres used in Auto Barber. If a
sphere has radius greater then this value it is not used in
AutoBarber procedure. This option can be switched off
by setting it to None.

auto_barber_mincut_level

True

If set True spheres of radius smaller than mincut are re-
sized to mincut value.

auto_barber_maxcut_level

True

If set True spheres of radius greater than maxcut are re-
sized to maxcut value.

auto_barber_tovdw

True

Correct cutting sphere by decreasing its radius by VdW
radius of the closest atom.

allow_passing_paths

False

If set True paths that do not enter the object are detected
and added to the rest of paths as ‘passing’ paths.

26

Chapter 3. Configuration file options

Aqua-Duct Documentation, Release 0.5.9

3.6 Stage inlets_clusterization

Option Default value

Description

recluster_outliers False

If set to True reclusterization of outliers is exe-
cuted according to the method defined in reclus-
terization section.

detect_outliers False

If set, detection of outliers is executed. It could
be set as a floating point distance threshold or set
to Auto. See Clusterization of inlets for more de-
tails.

singletons_outliers False

Maximal size of cluster to be considered as out-
liers. If set to number > O clusters of that size are
removed and their objects are moved to outliers.
See Clusterization of inlets for more details.

max_level 5

Maximal number of recursive clusterization levels.

create_master_paths False

If set to True master paths are created (fast CPU
and big RAM recommended; 50k frames long sim-
ulation may need ca 20GB of memory)

exclude_passing_in_clusterization True

If set to True passing paths are not clustered with
normal paths.

add_passing_to_clusters None

Allows to run procedure for adding passing paths
inlets to clusters with Auto Barber method. To en-
able this the option should be set to molecular en-
tity that will be used by Auto Barber.

3.7 Stage analysis

Option Default value Description

dump_config True If set to True configuration options, as seen by Valve,
are added to the head of results.

calculate_scope_object_size False If set to True volumes and areas of object and scope
approximated by convex hulls will be calculated for
each analyzed frames and saved in output CSV file.

scope_chull None Scope convex hull definition used in calculating vol-
ume and area.

object_chull None Object convex hull definition used in calculating vol-
ume and area.

3.8 Stage visualize

Option Default value Description

all_paths_raw False If True produces one object in PyMOL that holds all paths
visualized by raw coordinates.

all_paths_smooth False If True produces one object in PyYMOL that holds all paths
visualized by smooth coordinates.

all_paths_split False If is set True objects produced by all_paths_raw and
all_paths_smooth are split into Incoming, Object, and
Outgoing parts and visualized as three different objects.

all_paths_raw_io False If set True arrows pointing beginning and end of paths are
displayed oriented accordingly to raw paths orientation.

Continued on next page

3.6. Stage inlets_clusterization

27

Aqua-Duct Documentation, Release 0.5.9

Table 3.1 — continued from previous page

Option

Default value

Description

all_paths_smooth_io

False

If set True arrows pointing beginning and end of paths are
displayed oriented accordingly to smooth paths orienta-
tion.

simply_smooths

RecursiveVector

Option indicates linear simplification method to be used
in plotting smooth paths. Simplification removes points
which do not (or almost do not) change the shape of
smooth path. Possible choices are:
* RecursiveVector
(LinearizeRecursiveVector),
* HobbitVector (LinearizeHobbitVector),
* OneWayVector (LinearizeOnelWayVector),
* RecursiveTriangle
(LinearizeRecursiveTriangle),
e HobbitTriangle
(LinearizeHobbitTriangle),
* OneWayTriangle
(LinearizeOneWayTriangle).
Optionally name of the method can be fol-
lowed by a threshold value in parentheses, i.e.
RecursiveVector (0.05). For sane values of
thresholds see appropriate documentation of each
method. Default values work well. This option is not case
sensitive. It is recommended to use default method or
HobbitVector method.

paths_raw

False

If set True raw paths are displayed as separate objects or
as one object with states corresponding to number of path.

paths_smooth

False

If set True smooth paths are displayed as separate objects
or as one object with states corresponding to number of
path.

paths_raw_io

False

If set True arrows indicating beginning and end of paths,
oriented accordingly to raw paths, are displayed as sepa-
rate objects or as one object with states corresponding to
number of paths.

paths_smooth_io

False

If set True arrows indicating beginning and end of paths,
oriented accordingly to smooth paths, are displayed as
separate objects or as one object with states correspond-
ing to number of paths.

paths_states

False

If True objects displayed by paths_raw, paths_smooth,
paths_raw_io, and paths_smooth_io are displayed as
one object with states corresponding to number of paths.
Otherwise they are displayed as separate objects.

ctypes_raw

False

Displays raw paths in a similar manner as non split
all_paths_raw but each cluster type is displayed in sepa-
rate object.

ctypes_smooth

False

Displays smooth paths in a similar manner as non split
all_paths_smooth but each cluster type is displayed in
separate object.

show_molecule

False

If is set to selection of some molecular object in the sys-
tem, for example to protein, this object is displayed.

show_molecule_frames

Allows to indicate which frames of object defined by
show_molecule should be displayed. It is possible to set
several frames. In that case frames would be displayed as
states.

Continued on next page

28

Chapter 3. Configuration file options

Aqua-Duct Documentation, Release 0.5.9

Table 3.1 — continued from previous page

Option Default value Description

show_scope_chull False If is set to selection of some molecular object in the sys-
tem, for example to protein, convex hull of this object
is displayed.

show_scope_chull_frames 0 Allows to indicate for which frames of object defined by

show_chull convex hull should be displayed. It is pos-
sible to set several frames. In that case frames would be
displayed as states.

show_object_chull False If is set to selection of some molecular object in the system
convex hull of this object is displayed. This works exacly
the same way as show_chull but is meant to mark object
shape. It can be achieved by using name * and molecular
object definition plus some spatial constrains, for example
those used in object definition.
show_object_chull_frames 0 Allows to indicate for which frames of object defined by
show_object convex hull should be displayed. It is pos-
sible to set several frames. In that case frames would be
displayed as states.

Note: Possibly due to limitations of MDAnalysis only whole molecules can be displayed. If show_molecule
is set to backbone complete protein will be displayed any way. This may change in future version of
MDAnalysis and or aquaduct.

Note: If several frames are selected they are displayed as states which may interfere with other PyMOL objects
displayed with several states.

Note: If several states are displayed protein tertiary structure data might be lost. This seems to be limitation of
either MDAnalysis or PyMOL.

3.9 Clusterization sections

Default section for definition of clusterization method is named clusterization and default section for recluster-
ization method definition is named reclusterization. All clusterization sections shares some common options.
Other options depends on the method.

3.9. Clusterization sections 29

Aqua-Duct Documentation, Release 0.5.9

Option Default value Description

method barber or dbscan Name of clusterization method. It has to be one of the follow-
ing: barber, dbscan, affprop, meanshift, birch, kmeans. De-
fault value depends whether it is clusterization section (bar-
ber) or reclusterization section (dbscan).
recursive_clusterization clusterization or | If it is set to name of some section that holds clusterization

None method settings this method will be called in the next recur-
sion of clusteriation. Default value for reclusterization is
None.
recursive_threshold None Allows to set threshold that excludes clusters of certain size

from reclusterization. Value of this option comprises of op-
erator and value. Operator can be one of the following: >,
>=, <=, <. Value have to be expressed as floating number
and it have to be in the range of 0 to 1. One can use several
definitions separated by a space character. Only clusters of
size complying with all thresholds definitions are submitted
to reclusterization.

3.9.1 barber

Clusterization by barber method bases on Auto Barber procedure. For each inlets a sphere is constructed ac-
cording to Auto Barber separate_paths stage settings or according to parameters given in clasterization section.
Next, inlets that form coherent clouds of mutually intersecting spheres are grouped in to clusters. Method barber
supports the same settings as Auto Barber settings:

Option Value type Description

auto_barber str This option allows to select molecular entity used in
Auto Barber procedure. See also Auto Barber and
barber_with_ spheres ().

auto_barber_mincut float Minimal radius of spheres used in Auto Barber. If a sphere
has radius smaller then this value it is not used to cut. This
option can be switched off by setting it to None.
auto_barber_maxcut float Maximal radius of spheres used in Auto Barber. If a
sphere has radius greater then this value it is not used to
cut. This option can be switched off by setting it to None.

auto_barber_mincut_level bool If set True spheres of radius less then mincut are resized
to mincut value.

auto_barber_maxcut_level bool If set True spheres of radius greater then maxcut are re-
sized to maxcut value.

auto_barber_tovdw bool Correct cutting sphere by decreasing its radius by VdW

radius of the closest atom.

3.9.2 dbscan

For detailed description look at sklearn.cluster.DBSCAN documentation. Following table summarized
options available in Valve and is a copy of original documentation.

30 Chapter 3. Configuration file options

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

Aqua-Duct Documentation, Release 0.5.9

Option Value type Description
eps float The maximum distance between two samples for them to be consid-
ered as in the same neighborhood.
min_samples int The number of samples (or total weight) in a neighborhood for a
point to be considered as a core point. This includes the point itself.
metric str The metric to use when calculating distance between instances in a
feature array. Can be one of the following:
e euclidean,
e cityblock,
* cosine,
* manhattan.
algorithm str The algorithm to be used by the NearestNeighbors module to com-
pute pointwise distances and find nearest neighbors. Can be one of
the following:
* auto,
* ball_tree,
* kd_tree,
* brute.
leaf size int Leaf size passed to BallTree or cKDTree.

3.9.3 affprop

For detailed description look at Af finityPropagation documentation. Following table summarized options
available in Valve and is a copy of original documentation.

Option Value type Description

damping float Damping factor between 0.5 and 1.

convergence_iter | int Number of iterations with no change in the number of estimated clus-
ters that stops the convergence.

max_iter int Maximum number of iterations.

preference float Points with larger values of preferences are more likely to be chosen

as exemplars.

3.9.4 meanshift

For detailed description look at MeanShift documentation. Following table summarized options available in
Valve and is a copy of original documentation.

Option Value type Description
bandwidth Auto or float Bandwidth used in the RBF kernel. If Auto or None
automatic method for bandwidth estimation is used. See

estimate_bandwidth ().

cluster_all

bool

If true, then all points are clustered, even those orphans that are not
within any kernel.

bin_seeding

bool

If true, initial kernel locations are not locations of all points, but
rather the location of the discretized version of points, where points
are binned onto a grid whose coarseness corresponds to the band-
width.

min_bin_freq

int

To speed up the algorithm, accept only those bins with at least
min_bin_freq points as seeds. If not defined, set to 1.

3.9. Clusterization sections

31

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.estimate_bandwidth.html#sklearn.cluster.estimate_bandwidth

Aqua-Duct Documentation, Release 0.5.9

3.9.5 birch

For detailed description look at Birch documentation. Following table summarized options available in Valve
and is a copy of original documentation.

Option Value type Description

threshold float The radius of the subcluster obtained by merging a new sample and
the closest subcluster should be lesser than the threshold. Otherwise
a new subcluster is started.

branching_factor | int Maximum number of CF subclusters in each node.

n_clusters int Number of clusters after the final clustering step, which treats the
subclusters from the leaves as new samples. By default, this final
clustering step is not performed and the subclusters are returned as
they are.

3.9.6 kmeans

For detailed description look at KMeans documentation. Following table summarized options available in Valve
and is a copy of original documentation.

Option Value type Description

n_clusters int The number of clusters to form as well as the number of centroids to
generate.

max_iter int Maximum number of iterations of the k-means algorithm for a single
run.

n_init int Number of time the k-means algorithm will be run with different

centroid seeds. The final results will be the best output of n_init
consecutive runs in terms of inertia.

init str Method for initialization, defaults to k—-means++. Can be one of
following: k-means++ or random.
tol float Relative tolerance with regards to inertia to declare convergence.

3.10 Smooth section

Section smooth supports following options:

Option Value type Description

method str Smoothing method. Can be one of the following:

* window, (see WindowSmooth)

* mss, (see MaxStepSmooth)

* window_mss, (see WindowOverMaxStepSmooth)

e awin, (see ActiveWindowSmooth)

* awin_mss, (see Act iveWindowOverMaxStepSmooth)

e dwin, (see DistanceWindowSmooth)

* dwin_mss, (see DistanceWindowOverMaxStepSmooth)
* savgol. (see SavgolSmooth)

recursive int Number of recursive runs of smoothing method.

window int or float In window based method defines window size. In plain window it has to
be int number. In savgol it has to be odd integer.

step int In step based method defines size of the step.

function str In window based methods defines averaging function. Can be mean or
median.

polyorder int In savgol is polynomial order.

32 Chapter 3. Configuration file options

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans

CHAPTER
FOUR

VALVE TUTORIAL

This tutorial assumes aquaduct and Valve is already installed - see Aqua-Duct installation guide. 1Tt is also
assumed that user is acquainted with Valve manual and Valve Configuration file options.

4.1 Valve invocation

Usually Valve is run by:

’valve.py

To check if Valve is installed and works properly try to issue following commands:

valve.py ——help
valve.py —--version

4.2 Test data

Mouse!

We will use 1 ns MD simulation data of sEH protein (PDBID 1¢qz). This simulation was performed in Amber 14.
Necessary files can be found at Aqua-Duct home page in section download. Required data is in the sample data
file.

4.3 Inspect your system

Before we start any calculations let’s have a look at the protein of interest. Start PyYMOL and get 1cqgz PDB
structure (for example by typing in PyMOL command prompt fetch lcgz).

To setup Valve calculations we need to know the active site of the protein. More precisely we need to know IDs
of residues that are in the active site. This would allow us to create Object definition.

But wait. Is it really the correct structure? How many chains there are? What is the numeration of residues? How
does it compare with the topology file from sample data?

4.3.1 Create Object definition

Leti’s load another structure. Open file 1cqgz_sample_topology.pdb (see Test data). It is a first frame of
the MD simulation and it is an example of how the frame of MD looks like. In order to create Object definition
you have to discover following things:

1. What is the name of water molecules?

2. What are numbers of residues in the active site?

33

http://aquaduct.pl/
http://aquaduct.pl/download

Aqua-Duct Documentation, Release 0.5.9

3. What size the active site is of?

Note: Itis also a good idea to open . pdb file in your favorite text editor and look at residue numbers and names.

4.3.2 Create Scope definition

Scope definition is easy to create. We will use Convex hull version so the scope definition could be simply
backbone.

4.4 Prepare config file

Valve performs calculations according to the configuration (aka config) file.

Lets start from dumping config file template to config.txt file. Open it in your favorite editor and fill all
options. If you have troubles look at Configuration file options (and Valve manual).

Things to remember:
1. Provide correct paths to topology and trajectory data.
2. Enter correct Object and Scope definitions.

3. Make sure visualization is switched on.

4.5 Run Valve

Make sure all necessary data is in place. Open terminal, go to your working directory and type in:

’ valve.py -c config.txt

Depending on your machine and current load it may take a while (matter of minutes) to complete all calculations.

4.5.1 Visual inspection

In the last stage PyMOL should pop up and Valve should start to feed it with visualization data. This would take a
moment and if you set up save option a PyYMOL session would be saved. Once it is done Valve quits and switches
off PyMOL. Now, you can restart it and read saved session.

4.5.2 Clusterization

Improve clusterization of Inlets. See Configuration file options for more hints on available clusterization options.

4.5.3 Analysis tables

Open 5_analysis_results.txt file and look at summaries and tables. See also Valve manual.

4.6 Feedback

Give us your opinion. Send your questions, inquires, anything to developer(s): info@aquaduct.pl. There are
couple of questions that might be useful to form your opinion.

34 Chapter 4. Valve tutorial

mailto:info@aquaduct.pl

Aqua-Duct Documentation, Release 0.5.9

1. What do you like in Valve and Aqua-Duct?
2. What do you do not like in Valve or Aqua-Duct?
3. What is missing?

4. Do you find it useful?

4.6. Feedback 35

Aqua-Duct Documentation, Release 0.5.9

36 Chapter 4. Valve tutorial

CHAPTER
FIVE

AQUADUCT

5.1 aquaduct package

5.1.1 Subpackages

5.1.1.1 aquaduct.apps package

Submodules
aquaduct.apps.data module

class GlobalConfigStore
Bases: object

cachedir = None
cachemem = False

class CoordsRangeIndexCache
Bases: object

cache = {}
get_cric_reader (mode="r")
save_cric ()
load _cric()
check_version_compliance (current, loaded, what)
check_versions (version_dict)

class LoadDumpWrapper (filehandle)
Bases: object

This is wrapper for pickled data that provides compatibility with earlier versions of Aqua-Duct.
Conversions in use:
1. replace ‘aquaduct.” by ‘aquaduct.’
__init__ (filehandle)
convert (s)
read (*args, **kwargs)
readline (*args, ¥**kwargs)
get_vda_reader (filename)

class ValveDataAccess_pickle (mode=None, data_file_name=None, reader=None)
Bases: aquaduct.apps.data.ValveDataAccess

37

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

mimic_old_var_name = 'aq data_to_save'
unknown_names = 'UNK'

open (data_file_name, mode)

close ()

load ()

dump (**kwargs)

get_variable (name)

set_variable (name, value)

class ValveDataAccessRoots
Bases: object

roots = []

open (data_file_name, mode)
close_all(()

del ()
get_object_name (something)

get_object_from_name (name)

class IdsOverIds
Bases: object

static dict2arrays (d)
static arrays2dict (values=None, keys_lens=None)

class ValveDataAccess_nc (*args, **kwargs)
Bases: agquaduct.apps.data.ValveDataAccess

__init__ (*args, **kwargs)
open (data_file_name, mode)

ValveDataAccess
alias of ValveDataAccess pickle

aquaduct.apps.valvecore module

class ValveConfig
Bases: object, aquaduct .apps.valvecore.ConfigSpecialNames

__dinit__ ()

static common_config names ()

static common_traj_data_config names ()
static global_name ()

static cluster name ()

static recluster_name ()

static recursive_ clusterization name ()
static recursive_threshold name ()
static smooth_name ()

stage_names (nr=None)

38 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

get_common_traj_data (stage)
get_global_options ()
get_stage_options (stage)
get_cluster_options (section_name=None)
get_recluster_options ()
get_smooth_options ()
get_default_config()
load_config (filename)
save_config_stream (f¥)
save_config (filename)
get_general_ comment (section)
dump_config (dump_template=False)
ValveConfig _make_options_nt (input_options)
valve_begin ()
valve_end()
valve_load_config (filename, config)
valve_exec_stage (stage, config, stage_run, no_io=False, run_status=None, **kwargs)
stage_I_run (config, options, **kwargs)
stage_II_run (config, options, all_res=None, number_frame_rid_in_object=None, **kwargs)
stage_III_run (config, options, paths=None, **kwargs)
stage_IV_run (config, options, spaths=None, center_of_system=None, **kwargs)

stage_V_run (config, options, spaths=None, paths=None, inls=None, ctypes=None, reader=None,
**kwargs)

stage_VI_run (config, options, spaths=None, inls=None, ctypes=None, master_paths=None, mas-
ter_paths_smooth=None, **kwargs)

aquaduct_version_nice ()
Returns aquaduct version number as nicely formatted string.

Returns string composed on the basis of the number returned by version ().

Return type str

Module contents

5.1.1.2 aquaduct.geom package

Submodules
aquaduct.geom.cluster module

This module provides functions for clusterization. Clusterization is done by scikit—learn module.
get_required_params (method)

class BarberClusterResult (labels_)
Bases: object

Helper class for results of barber clusterization.

5.1. aquaduct package 39

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

__init__ (labels_)

class BarberCluster
Bases: object

Wrapper class that implements barber clusterization.
£it (coords, spheres=None)
Parameters
* coords (Iterable)— Input coordinates of points to be clustered.
* spheres (Iterable)— Input spheres for each point.

MeanShiftBandwidth (X, **kwargs)
Helper function for automatic calculation of a bandwidth for MeanShift method.

Parameters X (Iterable)— Coordinates of points to be clustered.

class PerformClustering (method, **kwargs)
Bases: object

Helper class for clusterization.
__dinit__ (method, **kwargs)
Parameters method (ob ject) — Class that implements cclusterization via fit method.
_str__ ()
__call__ (coords, spheres=None)
_get_noclusters (n)
£it (coords, spheres=None)
Parameters

* coords (Iterable)— Input coordinates of points to be clustered.

* spheres (Iterable) — Input spheres for each point. Optional, important only if
methodis BarberCluster.

Returns Clusters numbers.
Return type list of int
centers ()

Returns Centers of clusters.

aquaduct.geom.convexhull module

_wvertices_ids (convexhull)
_vertices_points (convexhull)
_point_within_ convexhull (convexhull, point)
__facets (convexhull)

_edges (*args, **kwargs)

is_point_within_convexhull (point_chull)

40 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

aquaduct.geom.master module

part2type_dict = {0: 's', 1: 'e', 2: 's'}
Part number to GenericPathTypeCodes dictionary.

parts = (0, 1, 2)
Parts enumerate.

class CTypeSpathsCollectionWorker (spaths=None, ctype=None, bias_long=>5,

smooth=None, lock=None)
Bases: object

Worker class for averaging spaths in points of master path.

__init__ (spaths=None, ctype=None, bias_long=35, smooth=None, lock=None)
Core method for averaging spaths in to master path.

Averaging is done in chunks.
Parameters
* spaths (11ist) - List of separate paths to average.
* ctype (InletClusterGenericType)— CType of spaths.
* bias_1long (int)— Bias towards long paths used in lens_norm ().
¢ smooth (Smooth) — Smoothing method.

coords_types_prob_widths (sp_slices_)
Calculates average coordinates, type and width in given chunk.

Parameter sp_slices_ is tuple of length equal to number of spaths. It contains slices for all spaths
respectively. With these slices spaths are cut and only resulting chunks are used for calculations.

Therefore, this method average spaths in one point of master math. This point is defined by slices
submitted as sp_1ices_ parameter.

Algorithm of averaging (within current chunks of spaths):
1. Coordinates for all spaths are collected.

2. Lengths of all spaths are collected (from cached variables) and kept as lists of lengths equal to
chunks’ sizes.

Note: Lengths of collected lengths of spaths are of the same size as coordinates

3. New coordinates are calculated as weighted average of collected coordintates with numpy .
average (). As weights collected lengths are used.

Note: Function numpy . average () is called with flatten coordinates and lengths.

4. Width of average path is calculated as mean value of flatten coordinates mutual distances.

5. Type of average paths is calculated as probability (frequency) of scope_name.

Parameters sp_slices (tuple)— Slices that cut chunks from all paths.
Return type 3 element tuple
Returns coordinates, type (frequency), and width of averaged spaths in current point
__call__ (nr_sp_slices_)
Callable interface.

Parameters nr_sp_slices (tuple)— Two element tuple: nr and sp_slice

5.1. aquaduct package 41

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html#numpy.average
https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html#numpy.average
https://docs.scipy.org/doc/numpy/reference/generated/numpy.average.html#numpy.average
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple

Aqua-Duct Documentation, Release 0.5.9

class CTypeSpathsCollection (spaths=None, ctype=None, bias_long=5, pbar=None,

threads=1)
Bases: object

Object for grouping separate paths that belong to the same CType. Method get_master._path () allows
for calculation of average path.

parts = (0, 1, 2)
Enumeration of spath parts.

__init__ (spaths=None, ctype=None, bias_long=>5, pbar=None, threads=1)
Parameters
* spaths (11ist)— List of separate paths.
* ctype (InletClusterGenericType)— CType of spaths.
* bias_long (int)— Bias towards long paths used in 1ens_norm().
* pbar — Progress bar object.
e threads (int)— Number of available threads.

beat ()
Touch progress bar, if any.

update ()
Update progres bar by one, if any.

lens ()
Returns total lengths of all paths.

If ctype in #:# and not O and not None then take length of object part only.
Returns Total (or object part) lengths of all paths.
Return type numpy.ndarray

lens_norm()
Returns normalized lengths calculated by lens ().

Applied normalization is twofold:
1. All lengths are divided by maximal length, and

2. All lengths are subjected to pow () function with p=Dbias_long.

Returns Normalized total (or object part) lengths of all paths.
Return type numpy.ndarray
lens_real ()
Returns real lengths of all paths.
Returns Sizes of all paths.
Return type list

full_size()
Returns desired size of master path.

Returns Size of master path.
Return type int

static simple_types_distribution (fypes)
Calculates normalized sizes of incoming, object, and outgoing parts of spath using generic types.

It is assumed that spath has object part.

Parameters types (11ist)— List of generic types.

42 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#pow
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#int

Aqua-Duct Documentation, Release 0.5.9

Return type 3 element list

Returns Normalized sizes of incomin, object, and outgoing parts.
types_distribution ()

Return type numpy.matrix

Returns median values of simple types_distribution () for all spaths.

types_prob_to_types (types_prob)
Changes types probabilities as returned by CTypeSpathsCollectionWorker.
coords_types _prob_widths () to types.

Parameters types_prob (1ist)— List of types probabilities.
Return type list
Returns List of GenericPathTypeCodes.

get_master_path (smooth=None, resid=(0, 0))
Averages spaths into one master path.

This is done in steps:
1. Master path is an average of bunch of spaths. Its length is determined by full_size () method.

2. All spaths are then divided in to chunks according to xzip_xzip () function with N set to lenght
of master path. This results in list of length equal to the length of master path. Elements of this
lists are slice objects that can be used to slice spaths in appropriate chunks.

3. Next, for each element of this list CTypeSpathsCollectionWorker.
coords_types_prob_widths () method is called. Types probabilities are changed
to types wiht t ypes_prob_to_types ().

4. Finally, all data are used to create appropriate MasterPath. If this fails None is returned.

Parameters
e smooth (Smooth)— Smoothing method.
* resid (int)— Residue ID of master path.
Return type MasterPath
Returns Average path as MasterPath object or None if creation of master path failed.
class FakeSingleResidueSelection (resid, frames, coords)
Bases: aquaduct.traj.sandwich.SingleResidueSelection
__init__ (resid, frames, coords)
coords (*args, **kwargs)

coords_smooth (sranges, smooth)

aquaduct.geom.pca module

class Center (X)
Bases: object

init (X)
__ecall (X)
undo (X)

class Normalize (X)
Bases: object

5.1. aquaduct package 43

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

__init_ (X)
__ecall (X)
undo (X)

class Standartize (X)
Bases: aquaduct.geom.pca.Center, aquaduct.geom.pca.Normalize

__init_ (X)
__ecall_ (X)
undo (X)

class PCA (X, prepro=None)
Bases: object

__init__ (X, prepro=None)
P

preprocess (X)
preprocess_undo (X)
__call (X)

undo (T)

aquaduct.geom.smooth module

Smooth module defines methods for smoothing of trajectories.

Available methods:

SavgolSmooth Savitzky-Golay based smoothing.

WindowSmooth Defined size window smoothing.

DistanceWindowSmooth Distance defined size window smoothing.

ActiveWindowSmooth Active size window smoothing.

MaxStepSmooth Maximal step smoothing.

WindowOverMaxStepSmooth Window smoothing over maximal step smoothing.

DistanceWindowOverMaxStepSmooth Distance window smoothing over maximal step smooth-
ing.

ActiveWindowOverMaxStepSmooth Active window smoothing over maximal step smoothing.

class Smooth (recursive=None, **kwargs)
Bases: object

Base class for all smoothing methods.
__init__ (recursive=None, **kwargs)

Parameters recursive (int)— Number of recursions of the method, everything evalu-
ated to False is equivalent to 1.

smooth (coords)
Abstract method for smoothing method implementation.

Parameters coords (Iterable) - Input coordinates to be smoothed.

__call_ (coords)
Call method for all smoothing methods.

Input coordinates should be iterable and each element should be numpy.ndarray. If length of coords
is less then 3 smoothing method is not run and coordinates are returned unchanged.

44 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#int

Aqua-Duct Documentation, Release 0.5.9

If recursive is set smoothing method is applied appropriate number of times.
Parameters coords (Iterable)— Input coordinates to be smoothed.
Return type numpy.ndarray
Returns Smoothed coordinates.

class GeneralWindow (function=<function mean>, **kwargs)
Bases: object

Base class for window based smoothing methods.
__init__ (function=<function mean>, **kwargs)

Parameters function (function) — Function to be used for averaging coordinates
within a window.

static max_window_at_pos (pos, size)
Method returns maximal possible window at given position of the list with given size of the list.
Returned window fits in to the list of given size and is symmetrical.

Parameters
* pos (int)— Position in question.
e size (int)— Length of the list.
Return type 2 element tuple of int
Returns Lowest possible bound and highest possible bound of the window.

check_bounds_at_max_window_at_pos (/b, ub, pos, size)
Method checks if window fits in to maximal possible window calculated according to
max_window_at_pos (). If not window is corrected.

Parameters
e 1b (int)— Lower bound of the window in question.
* ub (int)— Upper bound of the window in question.
* pos (int)— Position in question.
* size (int) - Length of the list.

Return type 2 element tuple of int

Returns Lowest possible bound and highest possible bound of the window corrected to
maximal possible window.

class IntWindow (window=35, **kwargs)
Bases: aguaduct.geom. smooth.GeneralWindow

Base class for all window smoothing methods that require integer window.
__init__ (window=5, **kwargs)
Parameters window (int)— One side size of the window.

class FloatWindow (window=>5.0, **kwargs)
Bases: aquaduct.geom. smooth.GeneralWindow

Base class for all window smoothing methods that require float window.
__init__ (window=5.0, **kwargs)
Parameters window (f1oat) — Size of the window.

class WindowSmooth (**kwargs)
Bases: aquaduct.geom. smooth.Smooth, aquaduct.geom.smooth.IntWindow

Defined size window smoothing.

5.1. aquaduct package 45

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float

Aqua-Duct Documentation, Release 0.5.9

For each coordinate a symmetrical (if possible) window of size defined by window is created. In case of
coordinates at the edges created window is truncated to the edges. Next, all coordinates within the window
are averaged with a function defined by function. Resulting value(s) are the smoothed coordinates.

__dinit_ (**kwargs)
smooth (*args, **kwargs)

Parameters coords (Iterable)— Input coordinates to be smoothed.

class DistanceWindowSmooth (**kwargs)

Bases: aquaduct.geom. smooth.Smooth, aquaduct .geom. smooth.FloatWindow
Distance defined size window smoothing.

This is modification of WindowSmooth method. The difference is in the definition of the window size.
Here, it is an average distance between points of input coordinates. Thus, before smoothing average distance
between all points is calculated and this value is used to calculate actual window size.

Next, for each coordinate a symmetrical (if possible) window of size calculated in the first step is created.
In case of coordinates at the edges created window is truncated to the edges. Next, all coordinates within
the window are averaged with a function defined by function. Resulting value(s) are the smoothed
coordinates.

__dinit__ (**kwargs)
smooth (*args, **kwargs)

Parameters coords (Iterable)— Input coordinates to be smoothed.

class ActiveWindowSmooth (**kwargs)

Bases: agquaduct.geom. smooth.Smooth, aquaduct.geom.smooth.FloatWindow
Active size window smoothing.

Similarly to DistanceWindowSmooth method the window size is defined as a distance. The difference
is that the actual window size is calculated for each point separately. Thus, for each coordinate the window is
calculated by examining the distance differences between points. In this method window is not necessarily
symmetrical. Once window is calculated all coordinates within the window are averaged with a function
defined by function. Resulting value(s) are the smoothed coordinates.

__init__ (**kwargs)
smooth (*args, **kwargs)

Parameters coords (Iterable)— Input coordinates to be smoothed.

class MaxStepSmooth (step=1.0, **kwargs)

Bases: aquaduct.geom. smooth.Smooth
Maximal step smoothing.

This method moves thorough coordinates and calculates distance over the traversed path. If it is then step
the coordinate is used as a “cardinal point”. The beginning and the end of the path are also added to the
list of cardinal points. Next, all cardinal points and points of linear interpolation between cardinal points
are returned as smoothed coordinates. Number of interpolated points is in accordance to points skipped
between cardinal points.

__init__ (step=1.0, **kwargs)
smooth (*args, **kwargs)

Parameters coords (Iterable) — Input coordinates to be smoothed.

class SavgolSmooth (window_length=>5, polyorder=2, **kwargs)

Bases: aquaduct.geom. smooth.Smooth
Savitzky-Golay based smoothing.

Method uses 1D filter available in SciPy, see savgol_ filter (). For each dimension filter is applied
separately. Only window_length and polyorder attributes are used.

46

Chapter 5. aquaduct

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter

Aqua-Duct Documentation, Release 0.5.9

__init__ (window_length=>5, polyorder=2, **kwargs)
Param int window_length: Size of the window, odd number.
Param int polyorder: Polynomial order.
set_savgol_function ()
smooth (*args, **kwargs)
Parameters coords (Iterable)— Input coordinates to be smoothed.

class WindowOverMaxStepSmooth (**kwargs)
Bases: aquaduct.geom. smooth.Smooth

Window smoothing over maximal step smoothing.
First, MaxStepSmooth is applied, and then WindowSmooth.
__dinit__ (**kwargs)
smooth (coords)
Parameters coords (Iterable)— Input coordinates to be smoothed.

class ActiveWindowOverMaxStepSmooth (**kwargs)
Bases: agquaduct.geom. smooth.Smooth

Active window smoothing over maximal step smoothing.
First, MaxStepSmooth is applied, and then Act i veWindowSmooth.
__init__ (**kwargs)
smooth (coords)
Parameters coords (Iterable)— Input coordinates to be smoothed.

class DistanceWindowOverMaxStepSmooth (**kwargs)
Bases: agquaduct.geom. smooth.Smooth

Distance window smoothing over maximal step smoothing.

First, MaxStepSmooth is applied, and then DistanceWindowSmooth.
__init__ (**kwargs)

smooth (coords)

Parameters coords (Iterable)— Input coordinates to be smoothed.

aquaduct.geom.traces module

diff (trace)
This function calculates the distance between 2 given points.

Parameters trace — coordinates in numpy array object
Returns distance between points
tracepoints (start, stop, nr)
Parameters
* start - coordinates of the first point as a numpy array object
* stop - coordinates of the second point as a numpy array object
* nr — number of elements between the first and second point
Returns two-dimentional numpy array; number of dimentions depends on nr parameter

midpoints (paths)

5.1. aquaduct package 47

Aqua-Duct Documentation, Release 0.5.9

The function returns a tuple of numpy arrays extended with mid point spanning last and first element(column)
of these arrays.

Parameters paths —a tuple of 2-dimentional np.arrays that hold 3D coordinates; each element
holds one trace, all elements are supposed to make one path divided in to sections

Returns paths elements with additional mid points as a generator object

length_step_std (frace)
This function calculates sum, mean and standard deviation from all segments of a trace.

Parameters trace — coordinates of points as numpy array

Returns a tuple with basics statistics of a trace
derrivative (values)
vector_norm (V)

Parameters V — a vector in a form of array-like object, tuple or a list

Returns normalized length of a vector

triangle_angles (A, B, C)
Parameters are coordinates of points which are tops of triangle. The function calculates angles in a triangle

formed by given coordinates.
Parameters
* A — coordinates of the first point
* B — coordinates of the second point
* C - coordinates of the third point

Returns list of arguments where angle is given in radians , the output is as follow:
[BAC,CAB,ABC]

triangle_angles_last (A, B, C)
Parameters are coordinates of points which are tops of triangle. The function calculates the [ABC] angle.

Parameters
* A — coordinates of the first point [A top]
* B — coordinates of the second point [B top]
* C - coordinates of the third point [C top]
Returns list with one value of ABC angle in radians

triangle_height (A, B, C)
Parameters are coordinates of points which are tops of triangle. The function calculates the ABC triangle

height.
Parameters
* A — coordinates of the first point [A top]
* B — coordinates of the second point [B top]
* C — coordinates of the third point [C top]
Returns one value of ABC triangle height

vectors_angle (A, B)
This function calculates the angle between two given vectors (starting from the [0,0,0] to the given coordi-

nates.
Parameters

* A — coordinates of the first point which is the end of the vector

48 Chapter 5. aquaduct

Aqua-Duct Documentation, Release 0.5.9

* B — coordinates of the second point which is the end of the vector
Returns the angle between vectors in question (in radians)

vectors_angle_alt (A, B)
This function calculates the angle between two given vectors (starting from the [0,0,0] to the given coordi-
nates

e alternative method.

Parameters
* A — coordinates of the first point which is the end of the vector
* B — coordinates of the second point which is the end of the vector

Returns the angle between vectors in question (in radians)

vectors_angle_alt_anorm (A, B, A_norm)

This function calculates the angle between two given vectors (starting from the [0,0,0] to the given coordinates

* alternative method with additional A_norm holding norm of A.

Parameters
* A — coordinates of the first point which is the end of the vector
* B - coordinates of the second point which is the end of the vector
* A_norm - additional parameter holding normalized of vector A

Returns the angle between vectors in question (in radians)

vectors_angle_anorm (A, B, A_norm)
This function calculates the angle between two given vectors (starting from the [0,0,0] to the given coordinates
using additional A_norm holding norm of A.
Parameters
* A — coordinates of the first point which is the end of the vector
* B — coordinates of the second point which is the end of the vector
* A_norm - additional parameter holding normalized of vector A
Returns the angle between vectors in question (in radians)
class LinearizeOneWay
Bases: object

here (coords)
This function simplifies the trace by removing the redundant, linear points :param coords: 3D coordi-
nates of a trace as an array-like object :return: indices of coordinates which are a staring and ending
points of linear fragments and other non-linear points of the trace

class LinearizeHobbit
Bases: aquaduct.geom.traces.LinearizeOneWay

and_back_again (coords)
__call__ (coords)

class LinearizeRecursive
Bases: object

Base class for linearization methods classes.

5.1. aquaduct package 49

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

It implements recursive algorithm.

here (coords, depth=0)
Core of recursive linearization argorithm.

It checks if the first, the last and the middle point are linear according to the criterion. The middle
point is a selected point that is in the middle of length of the paths made by input coordinates.

If these points are linear their indices are returned. Otherwise, coordinates are split into two parts.
First part spans points from the first point to the middle point (inclusive) and the second part spans
points from the middle (inclusive) to the last point. Next, these two parts are submitted recursively to
here ().

Results of these recursive calls are joined, redundant indices are removed and sorted result is returned.
Parameters
* coords (numpy.ndarray) — Input coordinates.
* depth (int)— Depth of recurence.
Returns Indices of coords points that can be used instead of all points in visulatization.
Return type list of int
___call_ (coords)

class Trianglelinearize (threshold=0.01)
Bases: object

__init_ (threshold=0.01)
is_1linear (coords, **kwargs)

class VectorLinearize (treshold=0.05236)
Bases: object

Base class for linearization methods classes.
It implements vector linearization criterion.
__init__ (treshold=0.05236)

is_1linear_core (coords, depth=None)
Method checks if input coordinates are linear according to the threshold and depth.

It begins with calculation of the threshold. If depth is None it is set to 1. Current threshold is calculated
with following simple equation:

threShOchuT’rent = thTEShOZdinitial * (2 - O.Qde‘nth)

Next, in a loop over all points but the first and the last the angle is calculated between two vectors.
The first one made by the point and the first point, and the second vector made by the last and the
first point. If any of the calculated angles is bigger the the treshold methods returns False; otherwise
method returns True.

Parameters

e coords (numpy.ndarray) — Coordinates for which linearization criterion is
checked.

* depth (int)— Depth of recurence.
Returns True if input coordinates are linear and False otherwise.
Return type bool

is_1linear (coords, depth=None, **kwargs)
For more detail see 1s_1inear core () which is used as the criterion of linearity in this method.

Parameters

50 Chapter 5. aquaduct

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Aqua-Duct Documentation, Release 0.5.9

e coords (numpy.ndarray) — Coordinates for which linearization criterion is
checked.

* depth (int)— Depth of recurence.

Returns True if input coordinates are linear and False otherwise. Criterion is checked for
coordinates in normal and reverse order.

Return type bool

class LinearizeRecursiveVector (treshold=0.05236)
Bases: aquaduct.geom.traces.LinearizeRecursive, aquaduct .geom.
traces.VectorLinearize Class provides recursive linearization of coordinates with
LinearizeRecursive algorithm and the criterion of linearity implemented by VectorLinearize.
This is default method.

class LinearizeRecursiveTriangle (threshold=0.01)
Bases: aquaduct.geom.traces.LinearizeRecursive, aquaduct.geom.traces.
TriangleLinearize

Class provides recursive linearization of coordinates with LinearizeRecursive algorithm and the
criterion of linearity implemented by TriangleLinearize.

class LinearizeHobbitVector (treshold=0.05236)
Bases: aquaduct.geom.traces.LinearizeHobbit, aquaduct.geom. traces.
VectorLinearize

Class provides recursive linearization of coordinates with LinearizeHobbit algorithm and the criterion
of linearity implemented by VectorLinearize.

class LinearizeHobbitTriangle (threshold=0.01)
Bases: aquaduct.geom.traces.LinearizeHobbit, aquaduct.geom.traces.
TriangleLinearize

Class provides recursive linearization of coordinates with LinearizeHobbit algorithm and the criterion
of linearity implemented by TriangleLinearize.

class LinearizeOneWayVector (treshold=0.05236)
Bases: aquaduct.geom.traces.LinearizeOneWay, aquaduct.geom. traces.
VectorLinearize

Class provides recursive linearization of coordinates with LinearizeOneWay algorithm and the criterion
of linearity implemented by VectorLinearize.

class LinearizeOneWayTriangle (threshold=0.01)
Bases: aquaduct.geom.traces.LinearizeOneWay, aquaduct.geom.traces.
TriangleLinearize

Class provides recursive linearization of coordinates with i nearizeOnelvay algorithm and the criterion
of linearity implemented by TrianglelLinearize.

Module contents

5.1.1.3 aquaduct.traj package

Submodules
aquaduct.traj.barber module

Module implements AutoBarber generation of spheres.

class Sphere
Bases: aquaduct.traj.barber.Sphere

5.1. aquaduct package 51

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Aqua-Duct Documentation, Release 0.5.9

Simple sphere class.
is_point_within (point)
is_sphere_within (sphere)
is_sphere_cloud (sphere)

class WhereToCut (spaths=None, inlets=None, expected_nr_of_spaths=None, selection=None,
mincut=None, mincut_level=False, maxcut=None, maxcut_level=False,

tovdw=False, forceempty=False)
Bases: aquaduct.traj.sandwich.ReaderAccess

Class implements method for creating (optimal) set of AutoBarber spheres for a collection of spaths; access
to trajectory is also required to read VAW radii.

__init__ (spaths=None, inlets=None, expected_nr_of_spaths=None, selection=None, min-
cut=None, mincut_level=False, maxcut=None, maxcut_level=False, tovdw=False,
forceempty=False)

Parameters
* spaths (1ist)-Listof aguaduct.traj.paths.SinglePath objects.

* expected_nr_of_spaths (int) — Number of spaths passed. Requilred when
length of spaths cannod be calculated, eg when it is a generator.

* selection (str) — Selection string of molecular object used for spheres genera-
tion.

* mincut (f1oat) — Value of mincut parameter.

* maxcut (f1oat)— Value of maxcut parameter.

* mincut_level (bool)— Flag of mincut_level.

* maxcut_level (bool) — Flag of maxcut_level.

* tovdw (bool)— Flag of to VAW radii correction parameter.

* forceemtpy (bool)—If set True spheres of radius O are returned if no other sphere
can be generated.

check_minmaxcuts ()
add_spheres_from_spaths (spaths)
add_spheres_from_inlets (inlets)
get_current_nr ()

inlet2sphere (inlet)

spath2spheres (sp)

_cut_thyself (spheres_passed, progress=False)
cut_thyself ()
is_overlaping_with_cloud (sphere)

cloud_groups (progress=False)

aquaduct.traj.dumps module

class TmpDumpWriterOfMDA
Bases: object

_dinit__ ()

dump_ frames (reader, frames, selection="protein’)

52 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

close ()

del ()

aquaduct.traj.inlets module

class ProtoInletTypeCodes

surface = 'surface'
internal = 'internal'
incoming = 'inin'
outgoing = 'inout'

class InletTypeCodes

Bases: aquaduct.traj.inlets.ProtoInletTypeCodes

all surface = [('surface',

all internal

all_incoming = [('surface’',

all_outgoing

surface_incoming = ('surface',

internal_incoming

internal_outgoing

surface_outgoing = ('surface',

itype = 'internal'

class InletClusterGenericType (inp, out)

Bases: object
__dinit__ (inp, out)

input

output

static cluster2str (cl)
__getitem__ (item)
len_ ()

str ()
__repr__ ()
make_val (base)
__cmp___ (other)

__hash__ ()

[('internal',

[('surface',

('internal'’',

('internal',

'inin'), ('surface', 'inout')]
'inin'), ('internal', 'inout')]
'inin'), ('internal', 'inin')]
'inout'), ('internal', 'inout')]

'inin')

'inin')

'inout')

'inout')

class InletClusterExtendedType (surfin, interin, interout, surfout)
Bases: aguaduct.traj.inlets.InletClusterGenericType

init (surfin, interin, interout, surfout)

generic

class Inlet (coords=None, type=None, reference=None, frame=None)

Bases: object

5.1. aquaduct package

53

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

init__ (coords=None, type=None, reference=None, frame=None)

class Inlets (spaths, center_of_system=None, onlytype=[(’surface’, ’inin’), (’surface’, ’inout’)],

passing=False, pbar=None)
Bases: object

__init__ (spaths, center_of_system=None, onlytype=[(’surface’, ’inin’), (’surface’, ’inout’)],

passing=False, pbar=None)

add_leaf wrapper (name=None, message=None, toleaf=None)
resize_leaf 0()

add_message_wrapper (message=None, toleaf=None)
extend_inlets (spath, onlytype=None)
add_cluster_ annotations (clusters)

add outliers_ annotations (new_clusters)
add_spheres (spheres)
get_inlets_references ()

size

coords

types

refs

refs names

call_clusterization_method (method, data, spheres=None)
get_flat_tree (message=None)

perform clustering (method)
perform_reclustering (method, skip_outliers=False, skip_size=None)
recluster_cluster (method, cluster)

recluster outliers (method)

small clusters to_outliers (maxsize)
renumber clusters ()

sort_clusters()

clusters_list

clusters_centers

clusters_size

clusters_std

spaths2ctypes (*args, **kwargs)

spath2ctype (sp)

lim to (what, towhat)

lim2spaths (spaths)

lim2rnames (rnames)

lim2types (fypes)

lim2clusters (clusters)

limspaths2 (*args, **kwargs)

54

Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

get_chull ()

aquaduct.traj.paths module

union_full (q, b)
union_smartr (a, b)

union (a, b, smartr=True)
glue (a, b)

xor_full (*args, **kwargs)
xor_smartr (*args, **kwargs)
xor (a, b, smartr=True)

left (a, b, smartr=True)
right (a, b, smartr=True)

class PathTypesCodes

path_in_code = 'i'
path_object_code = 'c'
path_out_code = 'o'
path_walk_code = 'w'

class GenericPathTypeCodes

object_name = 'c'
scope_name = 's'
out_name = 'n'

class GenericPaths (id_of res, name_of_res=None, single_res_selection=None, min_pf=None,

max_pf=None)
Bases: object, aquaduct.traj.paths.GenericPathTypeCodes

__init__ (id_of _res, name_of _res=None, single_res_selection=None, min_pf=None,
max_pf=None)

types

frames

coords

max_frame

min_ frame

add_012 (os_in_frames)
add_object (frame)
add_scope (frame)
add_type (frame, ftype)
—gpt ()

_gpo ()

—gpi()
get_paths_in()

5.1. aquaduct package 55

https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

class SinglePathlID (path_id=None, nr=None, name=None)

yield_single_paths (gps, fullonly=None, progress=None, passing=None)
yield_generic_paths (spaths, progress=None)

class MacroMolPath (path_id, paths, types, single_res_selection=None)
Bases: object, aquaduct.traj.paths.PathTypesCodes,

get_paths_out ()

find_paths (fullonly=False, smartr=True)
find paths_types (fullonly=False)
get_single_path_types (spath)

barber_with_spheres (spheres)

Bases: object

__init__ (path_id=None, nr=None, name=None)

str_ ()

__eq__ (other)

InletTypeCodes

empty_coords =

__init__ (path_id, paths, types, single_res_selection=None)

object_len
is_single ()

is_passing ()

is_frame_in (frame)
is_frame_object (frame)
is_frame_out (frame)

is_frame_walk (frame)

path_in
path_object
path_out
types_in
types_object
types_out
coords_first_ in
paths_first_ in
coords_last_out
paths_last_out
coords_filo
get_inlets()
coords_in
coords_object
coords_out

coords

array([], shape=(0,

aquaduct.traj.inlets.

dtype=float64)

56

Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

coords_cont
_paths
paths
paths_cont
types
types_cont
gtypes
gtypes_cont
etypes
etypes_cont
size

sizes
begins

ends

has_in
has_object

has_out

get_coords (*args, **kwargs)
_make_smooth_coords (smooth)

get_coords_cont (smooth=None)

get_distance_cont (smooth=None, normalize=False)

get_distance_rev_cont (*args, **kwargs)
get_distance_both_cont (*args, **kwargs)
get_velocity_cont (*args, **kwargs)

get_acceleration_cont (*args, **kwargs)

_MacroMolPath__ object_len_calculate()

class SinglePath (path_id, paths, types, single_res_selection=None)

Bases: aquaduct.traj.paths.MacroMolPath

is_single ()

is_passing ()

class PassingPath (path_id, paths, types, single_res_selection=None)

Bases: aquaduct.traj.paths.MacroMolPath

__init_ (path_id, paths, types, single_res_selection=None)

__has _out =

self.has_in = True self.has_out = True

object_len
has_in
has_out
is_single()

is_passing ()

None

5.1.

aquaduct package

57

Aqua-Duct Documentation, Release 0.5.9

is_frame_walk (frame)
types

gtypes

sizes

_paths

coords

path

paths

coords_first_in
paths_first in
coords_last_out
paths_last_out
get_coords (smooth=None)
get_inlets()
_PassingPath__ object_len_calculate()

class MasterPath (sp)
Bases: aquaduct.traj.paths.MacroMolPath

__init__ (sp)

add_width (width)

aquaduct.traj.sandwich module

class Window (start, stop, step)
Bases: object

__init__ (start, stop, step)
__repr_ ()

range ()

get_real (frame)

len ()

class MasterReader
Bases: object

open_reader_traj = {}
topology = ''
trajectory = ['']
window = None
sandwich_mode = None
engine_name = 'mda'’
__call__ (topology, trajectory, window=None, sandwich=False)
Parameters
* topology (str)— Topology file name.

* trajectory (1ist)— List of trajectories. Each element is a fine name.

58 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#str

Aqua-Duct Documentation, Release 0.5.9

¢ window (Window) — Frames window to read.
* sandwich (bool)— Flag for setting sandwitch mode.

__getstate__ ()

__setstate__ (state)

engine

correct_window ()

__repr_ ()

sandwich (number=False)

baguette (number=False)

iterate (number=Fualse)

get_single_reader (number)

get_reader_by_id (someid)

real number_of_ frames ()

number of_ frames (onelayer=False)

number_ of_ layers ()

class ReaderAccess
Bases: object

reader

VdW_radii = {'ge': 2.11, 'gd': 2.34, 'ga': 1.87, 'la': 2.43, '1li': 1.82, 'tl':
Dictionary of VAW radii.

Data taken from L. M. Mentel, mendeleev, 2014. Available at: https://bitbucket.org/lukaszmentel/
mendeleev. Package mendeleev is not used because it depends on too many other libraries.

class ReaderTraj (topology, trajectory, number=None, window=None)
Bases: aquaduct.traj.sandwich.ReaderAccess

__init__ (topology, trajectory, number=None, window=None)
Parameters
* topology (st r)— Topology file name.
* trajectory (1ist) - Trajectory file name.
* number (int)— Number of trajectory file.
¢ window (Window) — Frames window to read.
* reader (Reader) — Parent reader object.
This is base class for MD data access engines.
__repr__ ()
iterate_over frames|()
set_frame (frame)
dump_ frames (frames, selection=None, filename=None)
del ()
open_trajectory ()
close_trajectory ()

set_real_frame (real_frame)

5.1. aquaduct package 59

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#object
https://bitbucket.org/lukaszmentel/mendeleev
https://bitbucket.org/lukaszmentel/mendeleev
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int

Aqua-Duct Documentation, Release 0.5.9

real number of frames ()

parse_selection (selection)

atom_vdw (atomid)

atom2residue (atomid)

atoms_positions (atomids)
residues_positions (resids)

residues_names (resids)

atoms_masses (atomids)
dump_frames_to_£file (frames, selection, filename)

class ReaderTrajViaMDA (topology, trajectory, number=None, window=None)
Bases: aguaduct.traj.sandwich.ReaderTraj

open_trajectory ()
close_trajectory ()
set_real_frame (real_frame)
parse_selection (selection)
atom2residue (aromid)
atoms_positions (atomids)
residues_positions (resids)
residues_names (resids)
real number of frames ()
atoms_masses (atomids)
atom_vdw (atomid)
dump_frames_to_£file (frames, selection, filename)

class Selection (selected)
Bases: aquaduct.traj.sandwich.ReaderAccess

__init__ (selected)
layer (number)
numbers ()

ix (ix)

len ()

get_reader (number)
add (other)
uniquify ()

ids ()

coords ()
center_of mass ()

class AtomSelection (selected)
Bases: aquaduct.traj.sandwich.Selection

vdw ()

residues ()

60 Chapter 5. aquaduct

Aqua-Duct Documentation, Release 0.5.9

coords ()

center_of mass ()

contains_residues (other_residues, convex_hull=False, map_fun=None, known_true=None)
containing_residues (other_residues, *args, **kwargs)

chull ()

class ResidueSelection (selected)
Bases: aguaduct.traj.sandwich.Selection

coords ()

names ()

single_residues ()
coords_range_core (*args, **kwargs)
coords_range (srange, number, rid)

class FramesRangeCollection
Bases: object

__init__ ()

append (srange)

get_ranges (srange)
smooth_coords_ranges (*args, **kwargs)

class SingleResidueSelection (resid)
Bases: aquaduct.traj.sandwich.ReaderAccess

__init_ (resid)
get_reader ()

coords (frames)
_cooxds (*args, **kwargs)

coords_smooth (sranges, smooth)

Module contents

5.1.1.4 aquaduct.utils package

Submodules
aquaduct.utils.clui module

Module comprises convieniences functions and definitios for different operations related to command line user
interface.

class roman_emulation
Bases: object

toRoman (nr)
emit_message_to_file in root_logger (mess)

message_special (mess)

5.1. aquaduct package 61

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

message (mess, cont=False)
Prints message to standard error. If FileHandler is present in the root__logger the same message is

appended to the log file.
Parameters
* mess (str)— message to print
* cont (bool) —if set True no new line is printed

class fbm (info, cont=True)
Bases: object

__init__ (info, cont=True)
__enter__ ()

__exit__ (typ, value, traceback)
__call__ (info)

class tictoc (mess)
Bases: object

__init_ (mess)
__enter_ ()
__exit__ (typ, value, traceback)

gregorian_year_in_days = 365.2425
Length of Gregorian year in days. Average value. Source: https://en.wikipedia.org/wiki/Year

smart_time_string (s, rl=0, t=1.1, maximal_length=None, maximal_units=5)
Function transforms time in seconds to nicely formatted string of length defined by maximal_length.
Depending on number of seconds time is represented with one or more of the following units:

Unit name | Unit abbreviation
seconds S

minutes m

hours h

days d

years y

Maximal number of units used in time string can be set with maximal_units.
Parameters
* s (int)— Input time in seconds.
* rl (int)— Number of units already used for representing time.
e t (float) - Exces above standard number of current time units.

* maximal length (int)—Maximal length of the output string. Must be greater then
0.

* maximal_units (int)— Maximal number of units used in the output string. Must
be greater then 0 and lower then 6.

Returns string of nicely formated time
Return type str

gsep (sep="-', times=72, length=None)
Generic separator.

Parameters

* sep (str)— Element(s) of separator.

62 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://en.wikipedia.org/wiki/Year
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Aqua-Duct Documentation, Release 0.5.9

* times (int)— Number of times sep is printed.
* length (int)— Optional maximal length of output.
Returns String separator.
Return type str
tsep (line)
Parameters line (str)— Input line.
Returns Returns default gsep () of length of 1ine.
underline (line)
Parameters line (str)— Input line.

Returns String made by concatenation of 1ine, os.linesep, and output of t sep () called
with 1ine.

Return type str
thead (line)
Parameters line (str)— Input line.

Returns String made by concatenation of output of tsep () called with 1ine, line, os.
linesep, and again output of t sep () called with 1ine.

Return type str

class SimpleProgressBar (maxval=None, mess=None)
Bases: object

Simple progress bar displaying progress with percent indicator, progress bar and ETA. Progress is measured
by iterations.

Variables
* rotate (str) - String comprising characters with frames of a rotating toy.
* barlenght (int)— Length of progress bar.
* maxval (int)— maximal number of iterations
e current (int) - current number of iterations

e overrun_notice (bool)—if True, overrun above maxval iterations causes insert
of newline

* overrun (bool) - flag of overrun

* begin (int) — time in seconds at the initialization of the SimpleProgressBar
class.

tcurrent (int) - time in seconds of current iteration
rotate = '"\\|/-"
barlenght = 24
__init__ (maxval=None, mess=None)
Parameters

* maxval (int)— Maximal number of iterations stored to maxval.

* mess (str)— Optional message displayed at progress bar initialization.
bar ()

ETA ()
Returns ETA calculated on the basis of current number of iterations current and current time
tcurrent. If number of iterations is O returns ?. Time is formated wiht smart_time string().

5.1. aquaduct package 63

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

Aqua-Duct Documentation, Release 0.5.9

Returns ETA as string.
Return type str

percent ()
Returns float number of precent progress calculated in the basis of current number of iterations
current. Should return number between 0 and 100.

Returns percent progress number
Return type float

show ()
Shows current progress.

If value returned by percent () is =< 100 then progres is printed as percent indicator leaded by ETA
calculated by ETA ().

If value returned by percent () is > 100 then progress is printed as number of iterations and total
time.

Progress bar is writen to standard error.
heartbeat ()
next ()

update (step)
Updates number of current iterations current by one if step is > 0. Otherwise number of current
iterations is not updated. In boths cases time of current iteration t current is updated and show ()
is called.

Parameters step (int)—update step

ttime ()
Calculates and returns total time string formated with smart_time_string().

Returns string of total time
Return type str

finish ()
Finishes progress bar. First, update () is called with step = 0. Next message of total time is writen
to standard error.

pbar
alias of SimpleProgressBar

get_str_timestamp ()

class SimpleTree (name=None, message=None)
Bases: object

__init__ (name=None, message=None)

__repr__ ()

is_leaf ()

leafs names

get_leaf (name)

add_message (message=None, toleaf=None, replace=False)
add_message_to_1leaf (message=None, toleaf=None, replace=False)
add_1leaf (name=None, message=None, toleaf=None)

add_leaf to_leaf (name=None, message=None, toleaf=None)

print_simple_tree (st, prefix=None, multiple=False, concise=True)

64 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

aquaduct.utils.helpers module

Collection of helpers - functions and decorators.

combine (seqin)
This is an alien function. It is not extensively used.

Directly taken form http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/302478/index_txt

Returns a list of all combinations of argument sequences. For example, following call:

combine (((1,2), (3,4)))

gives following list of combinations:

’[[l, 31, [1, 41, [2, 31, [2, 4]]

Parameters seqin (tuple)— Tuple of sequences to combine.
Returns All possible combinations of all input sequences.

Return type list of lists

are_rows_uniq (some_array)
robust_and (q, b)
robust_or (a, b)

is_ number (s)

lind ([, ind)
Indexes lists using lists of integers as identificators. For example:

’lind([‘a','b','c’,‘d','e'],[11412])

returns:

’[!bl, 'e', ’C‘]

Parameters
e 1 (1ist)— Listto be indexed.
* ind (1ist)— Integer indexes.
Returns Reindexed list.
Return type list
class Auto
Auto type definition. The class is used as an alternative value for options (if particular option supports

it). If options (or variables/parameters etc.) have value of Auto it means that an automatic process for
parametrization should be performed.

For example, if the input parameter is set to Aut o it is supposed that its value is calculated on the basis of
input data or other parameters.

__repr__ ()
Returns String Auto.
Return type str

__str ()
Calls__ _repr ().

5.1. aquaduct package 65

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/302478/index_txt
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#str

Aqua-Duct Documentation, Release 0.5.9

create_tmpfile (ext=None)
Creates temporary file. File is created, closed and its file name is returned.

Note: It is responsibility of the caller to delete the file.

Parameters ext (st r)— Optional extension of the file.
Returns File name of created temporary file.
Return type str
range2int (r, unig=True)
Transforms a string range in to a list of integers (with added missing elements from given ranges).

For example, a following string:

"022 4:5 7 9

is transformed into:

][0,1,2,4,5,7,91

Parameters
* r (str)— String of input range.

* uniq (bool) — Optional parameter, if set to True only unique and sorted integers are
returned.

Returns List of integers.
Return type list of int
int2range (/)
Transforms a list of integers in to a string of ranges.

For example, a following list:

][0,1,2,4,5,7,9]

is transformed into:

’0:2 4:5 7 9

Parameters 1 (1ist)—input list of int
Returns String of ranges.
Return type str
is_iterable (l)
Checks if provided object is iterable. Returns True is it is iterable, otherwise returns False.
Parameters 1 (1ist) - input object
Returns True if submitted object is iterable otherwise returns False.
Return type bool

sortify (gen)
Decorator to convert functions’ outputs into a sorted list. If the output is iterable it is converted in to a list
of appropriate length. If the output is not iterable it is converted in to a list of length 1.

Written on the basis of 1istify ().

66 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool

Aqua-Duct Documentation, Release 0.5.9

Returns Output of decorated function converted to a sorted list.
Return type list

uniqify (gen)
Decorator to convert functions’ outputs into a sorted list of unique objects. If the output is iterable it is
converted in to a list of appropriate length. If the output is not iterable it is converted in to a list of length 1.

Written on the basis of 1istify ().
Returns Output of decorated function converted to a sorted list of unique objects.
Return type list
noaction (gen)

listify (gen)
Decorator to convert functions’ outputs into a list. If the output is iterable it is converted in to a list of
appropriate length. If the output is not iterable it is converted in to a list of length 1.

This function was copied from:
http://argandgahandapandpa.wordpress.com/2009/03/29/python- generator-to-list-decorator/
and further improved by tljm@wp.pl.

Returns Output of decorated function converted to a list.

Return type list

tupleify (gen)
Decorator to convert functions’ outputs into a tuple. If the output is iterable it is converted in to a tuple of
apropriate length. If the output is not iterable it is converted in to a tuple of length 1.

Written on the basisof 1istify ().
Returns Output of decorated function converted to a tuple.
Return type tuple

class arrayify (shape=None)
Bases: object

__init__ (shape=None)

__call__ (gen)
Decorator to convert functions’ outputs into a 2D numpy array. If the output is iterable it is converted
in to a 2D numpy array of appropriate shape. If the output is not iterable it is converted in to a 2D
numpy array of shape 1x1.

Written on the basisof 1istify ().
Returns Output of decorated function converted to a 2D numpy array.
Return type numpy.ndarray

arrayifyl (gen)
Decorator to convert functions’ outputs into a 1D numpy array. If the output is iterable it is converted in to
a 2D numpy array of appropriate shape. If the output is not iterable it is converted in to a 2D numpy array
of shape 1x1.

Written on the basisof 1istify ().
Returns Output of decorated function converted to a 1D numpy array.
Return type numpy.ndarray

list_blocks_to_slices (I)
Slices list in to block according to its elements identity. Resulting slices correspond to blocks of identical
elements.

Parameters 1 (1ist)— List of any objects.

5.1. aquaduct package 67

http://argandgahandapandpa.wordpress.com/2009/03/29/python-generator-to-list-decorator/
mailto:tljm@wp.pl
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Aqua-Duct Documentation, Release 0.5.9

Returns Generator of slices.

Return type generator

split_list (I, s)

what2what (what, towhat)

This function search if elements of the one list (:attr: ‘what’) are present in the other list (:attr: ‘towhat’)
and returns indices of elements form :attr:’what’ list as a tuple. If elements from the first list are not present
in the second list the tuple is empty. :param list what: Input list for which indices of elements present in
towhat are returned. :param list towhat: List of elements which input list is indexed to. :return: Indices of
what list that are present in t owhat list. :rtype: tuple

make_iterable (something)

If input object is not iterable returns it as one element list. Otherwise returns the object.
Parameters something (object) — Input object.
Returns Iterable object.

Return type iterable or list

iterate_or_die (something, times=None)

strech_zip (*args)

compress_zip (*args)

zip_zip (*args, **kwargs)

xzip_xzip (*args, **kwargs)

concatenate (*args)

Concatenates input iterable arguments in to one generator.

class Bunch (**kwds)

Bases: object
http://code.activestate.com/recipes/52308 foo=Bunch(a=1,b=2)
__init_ (**kwds)

class SmartRangeFunction (element, times)

Bases: object

__init__ (element, times)

__str_ ()
__repr__ ()
len ()
get ()

rev ()

isin (element)
first_element ()
last_element ()
overlaps (srange)
overlaps_mutual (srange)

contains (srange)

class SmartRangeEqual (element, times)

Bases: aquaduct.utils.helpers.SmartRangeFunction

type = 'e'

68

Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
http://code.activestate.com/recipes/52308
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

get ()

rev ()

isin (element)
last_element ()

class SmartRangeIncrement (element, times)
Bases: aquaduct.utils.helpers.SmartRangeFunction

type = 'i'

get ()

rev ()

isin (element)
last_element ()

class SmartRangeDecrement (element, times)
Bases: aquaduct.utils.helpers.SmartRangeFunction

type = 'd’

get ()

rev ()

isin (element)
last_element ()

class SmartRange (iterable=None)
Bases: object

__init__ (iterable=None)
__str_ ()

__repr__ ()
first_element ()
last_element ()
last_times ()

raw

append (element)

get ()

rev ()

len ()
__diter_ ()
min ()

max ()

isin (element)

aquaduct.utils.maths module

class NumpyDefaultsStorageTypes
Bases: object

5.1. aquaduct package 69

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

float_default
alias of float64

int_default
alias of int 64

make_default_array (array_like)

aquaduct.utils.multip module

class CpuThreadsCount
Bases: object

cpu_count = 2

threads_count = None

Module contents

5.1.1.5 aquaduct.visual package

Submodules
aquaduct.visual.cmaps module
aquaduct.visual.helpers module

euclidean (A, B)

cityblock (A, B)

cc_safe (c)

cec(c)
color_codes (code, custom_codes=None)
get_cmap (size)

class ColorMapDistMap
Bases: object

grey = (0.5, 0.5, 0.5, 1)

__init__ ()

distance (El, E2)

static color distance (¢l,e2)

__call_ (node)

_ColorMapDistMap__do_cadex ()
£ like (n)

aquaduct.visual.pymol_cgo module
aquaduct.visual.pymol_connector module

class BasicPymolCGO
Bases: object

70

Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

cgo_entity begin = []

cgo_entity end = []

__init__ ()

clean (empty=False)

new ()

get ()

static make_color_triple (color_definition)

class BasicPymolCGOLines
Bases: aquaduct.visual.pymol_connector.BasicPymolCGO

cgo_entity begin = [2.0, 1.0]
cgo_entity_end = [3.0]
add (coords=None, color=None)

class BasicPymolCGOSpheres
Bases: aquaduct.visual.pymol_connector.BasicPymolCGO

cgo_entity begin = []
cgo_entity _end = []
add (coords=None, radius=None, color=None)

class BasicPymolCGOPointers
Bases: aquaduct.visual.pymol_connector.BasicPymolCGO

cgo_entity begin = []
cgo_entity end = []

add_cone (coordsl=None, coords2=None, radiusl=None, radius2=None, colorl=None,
color2=None)

add_pointer (point=None, direction=None, length=None, color=None, reverse=False)

class SimpleTarWriteHelper
Bases: object

__init__ ()

open (filename)
save_object2tar (obj, name)
save_file2tar (filename, name)
del ()

class ConnectToPymol
Bases: object

cgo_line_width = 2.0
ct_pymol = 'pymol'
ct_file = 'file'
__init__ ()

decode_color (*args, **kwargs)
init_pymol ()

init_script (filename)

add_cgo_object (name, cgo_object, state=None)

5.1. aquaduct package 71

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

del_cgo_object (name, state=None)
load_pdb (name, filename, state=None)
orient_on (name)

del ()

class SinglePathPlotter (pymol_connector, linearize=None)
Bases: object

__init__ (pymol_connector, linearize=None)

add_single_path_continous_trace (spath, smooth=None, plot_in=True,
plot_object=True, plot_out=True, plot_walk=True,
**kwargs)

paths_trace (spaths, smooth=None, name="paths’, state=None, **kwargs)

paths_inlets (spaths, smooth=None, color=None, plot_in=True, plot_out=True, name="in-out-
let’, state=None, **kwargs)

scatter (coords, radius=0.4, color="r’, name="scatter’, state=None)

convexhull (chull, color="m’, name="convexhull’, state=None)

aquaduct.visual.quickplot module

yield spath_len_and_smooth_diff in_types_slices (sp, smooth=None,
smooth_len=None,
smooth_diff=None,

types="etypes’)
plot_colorful_lines (x, Y, ¢, **kwargs)

spaths_spectra (spaths, **kwargs)
plot_spath_spectrum (sp, **kwargs)
spath_spectrum (sp, **kwargs)
showit (gen)

get_ax3d (fig, sub=111)

class SimpleTracePlotter
Bases: object

plot_1line (coords, color, **kwargs)
single_trace (coords, color="r’, **kwargs)

path_trace (path, color=('r’, ’g’, ’b’), plot_in=True, plot_object=True, plot_out=True,
**kwargs)

class SimpleProteinPlotter
Bases: aquaduct.visual.quickplot.SimpleTracePlotter

protein_trace (protein, smooth=None, color=(’c’, 'm’,’y’), ¥**kwargs)

class SimplePathPlotter
Bases: aquaduct.visual.quickplot.SimpleTracePlotter

single_path_traces (spaths, smooth=None, color=('r’, ’g’, ’b’), **kwargs)

class MPLTracePlotter
Bases: aquaduct.visual.quickplot.SimplePathPlotter, aquaduct.visual.
quickplot.SimpleProteinPlotter

init_ax (*args, **kwargs)

72 Chapter 5. aquaduct

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

Aqua-Duct Documentation, Release 0.5.9

plot_1line (*args, **kwargs)

scatter (*args, **kwargs)

Module contents

5.1.2 Module contents

Aqua-Duct - a collection of tools to trace residues in MD simulation.

version ()
Returns aquaduct version number.

Returns 3 element tuple of int numbers
Return type tuple

version nice ()
Returns aguaduct version number as nicely formatted string.

Returns string composed on the basis of the number returned by version ().
Return type str

greetings ()
Returns fancy greetings of aquaduct. It has a form of ASCII-like graphic. Currently it returns following
string:

~~~AQUA-DUCT ~ ~ ~
FHEAFFRAFFRAFFRAFFRAFHHAFFAAFRAAFEAAFRAFH R RS

#H## #tHF#AFFH #AFHAAFH #H##
## #H## #H### ##
# ## ## #
# ## ## #
# ## ## #
# ## ## #

Returns aquaduct fancy greetings.

Return type str

5.1. aquaduct package 73


https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Aqua-Duct Documentation, Release 0.5.9

74 Chapter 5. aquaduct



CHAPTER
SIX

AQUA-DUCT CHANGELOG

* 0.5.9 (12.03.2018)

Rewritten module for MD data access. Sandwich mode added.

Coordinates can be stored in cache directory, in memory or generated on demand.

Support for long trajectories.

Passing through paths are supported.

Improvements in visualization script.

Coordinates of residues are calculated as center of geometry.

Recommended MDAnalysis is set to >=0.16 and <0.17. Version 0.17 is supported but not recom-
mended.

Bug fixes and code cleanup.
¢ 0.4.0 - 0.4.14 (20.11.2017) unofficial
Uses newest MDAnalysis (0.16.2).

Steady improvement of documentation (including API).

Names of traced molecules are returned in the result file and tables are split appropriately.

Tables in the result file are split in regard to Object and Passing paths.

Passing through paths are being introduced, WIP.

Additional tables in the result file.

CRD is enabled as topology/trajectory format.

Traced residues are identified by resindices instead of resids; this allows to use weak topologies
such as PDB.

Removed roman dependency.

In addition to histograms approximate (ConvexHull approximation) areas and volumes of the
scope and object can be calculated.

— Bug fixes and reliability fixes.
* 0.3.7 (18.07.2017)
— Enable XTC trajectory format.
— Reliability fix in progress bar display.
* 0.3.6 (28.06.2017)
— AQ can be run for given part of trajectory.
— Fixed bug in passing options to Barber clusterization method.

— Recursive threshold can be defined as range; no disjoint ranges are supported.

75



Aqua-Duct Documentation, Release 0.5.9

0.3.5 (18.04.2017)
— As for now, the only supported version of MDAnalysis is 0.15.
0.3.4 (14.04.2017)

— Fixed bug in progress bar updating method causing critical error in some specific circumstances.

0.3.3 (20.03.2017)

— AutoBarber default values of maxcut_level and mincut_level changed to True.
— Improved template configuration file.
— Number of small improvements in documentation.

0.3.2 (24.02.2017)

Major improvement: new auto_barber based clustering method.

Clusterization history displayed as simple ascii tree.

AutoBarber min and max cut level options added.

Barber moved to separate module.

— Fixed bug in visualization script; if no molecule is kept do not set style and color.
* 0.3.1 (04.02.2017)

— AutoBarber tovdw option.

— AutoBarber minimal and maximal cut options.

— Fixed bug in AutoBarber: some areas were sometimes not cut.

— Documentation improvements.

— Valve driver simplified. Most of the functionality moved to separate module.

— Option for single precision storage.

— Added Savitzky-Golay smoothing; AQ requires SciPy >= 0.14 now.

— Improved sorting of CTypes.

— Raw and Separate paths uses SmartRanges. This allowed for excellent performance improvement
of Separate paths calculation.

— Default display of molecule changed to silver cartoon.

— Object shape displayed in orange.

Fixed several small bugs.
* 0.2.26 (21.01.2017)
— Stage execution time debug messages.
— Total execution time debug message.
* 0.2.25 (18.01.2017)

— initial public release

76 Chapter 6. Aqua-Duct changelog



PYTHON MODULE INDEX

a

aquaduct, 73

aquaduct .apps, 39

aquaduct .apps.data, 37
aquaduct.apps.valvecore, 38
aquaduct .geom, 51

aquaduct .geom.cluster, 39
aquaduct .geom. convexhull, 40
aquaduct .geom.master, 41
aquaduct .geom.pca, 43
aquaduct .geom. smooth, 44
aquaduct .geom.traces, 47
aquaduct.traj, 61
aquaduct.traj.barber, 51
aquaduct.traj.dumps, 52
aquaduct.traj.inlets, 53
aquaduct.traj.paths, 55
aquaduct.traj.sandwich, 58
aquaduct.utils, 70

aquaduct .utils.clui, 61
aquaduct.utils.helpers, 65
aquaduct.utils.maths, 69
aquaduct .utils.multip, 70
aquaduct .visual, 73

aquaduct .visual.cmaps, 70
aquaduct.visual.helpers, 70
aquaduct.visual.pymol_cgo, 70
aquaduct.visual.pymol_connector, 70
aquaduct.visual.quickplot, 72

77



Aqua-Duct Documentation, Release 0.5.9

78 Python Module Index



INDEX

Sym bols __init__() (ColorMapDistMap method), 70
_ColorMapDistMap__do_cadex() (ColorMapDistMap —init__( (ConnectToPymol method), 71
method), 70 __init_ () (DistanceWindowOverMaxStepSmooth
_MacroMolPath__object_len_calculate() (MacroMol- method), 47
Path method), 57 __init__() (DistanceWindowSmooth method), 46
_PassingPath__object_len_calculate()  (PassingPath __init__() (FakeSingleResidueSelection method), 43
method), 58 __init__() (FloatWindow method), 45
_ValveConfig__make_options_nt() (ValveConfig __init__() (FramesRangeCollection method), 61
method), 39 __init__ () (GeneralWindow method), 45
__call__() (CTypeSpathsCollectionWorker method), 41 —init_0 (GenericPaths method), 55
__call__() (Center method), 43 __init__() (Inlet method), 53
__call__() (ColorMapDistMap method), 70 __init__() (InletClusterExtendedType method), 53
__call__() (LinearizeHobbit method), 49 __init__ () (InletClusterGenericType method), 53
__call__() (LinearizeRecursive method), 50 —init__() (Inlets method), 54
__call__() (MasterReader method), 58 —init_ () (IntWindow method), 45
_call__() (Normalize method), 44 __init__() (LoadDumpWrapper method), 37
_call__() (PCA method), 44 __init__() (MacroMolPath method), 56
__call__() (PerformClustering method), 40 —init__() (MasterPath method), 58
__call__() (Smooth method), 44 __init__ () (MaxStepSmooth method), 46
__call__() (Standartize method), 44 —init_ () (Normalize method), 43
__call__() (arrayify method), 67 __init__() (PCA method), 44
_call__() (fbm method), 62 __init__ () (PassingPath method), 57
__cmp__() (InletClusterGenericType method), 53 —init__() (PerformClustering method), 40
__del__() (ConnectToPymol method), 72 —init__() (ReaderTraj method), 59
__del__() (ReaderTraj method), 59 __init__() (SavgolSmooth method), 46
__del__() (SimpleTarWriteHelper method), 71 __init__() (Selection method), 60
__del__() (TmpDumpWriterOfMDA method), 53 __init__() (SimpleProgressBar method), 63
__del__() (ValveDataAccessRoots method), 38 —init__() (SimpleTarWriteHelper method), 71
__enter__() (fbm method), 62 __init__() (SimpleTree method), 64
__enter__() (tictoc method), 62 __init__() (SinglePathID method), 56
__eq__() (SinglePathID method), 56 __init__() (SinglePathPlotter method), 72
__exit_ () (fbm method), 62 __init__() (SingleResidueSelection method), 61
__exit_ () (tictoc method), 62 __init__() (SmartRange method), 69
__getitem__() (InletClusterGenericType method), 53 __init__() (SmartRangeFunction method), 68
__getstate__() (MasterReader method), 59 —init__() (Smooth method), 44
__has_out (PassingPath attribute), 57 __init__() (Standartize method), 44
__hash__() (InletClusterGenericType method), 53 __init__() (TmpDumpWriterOfMDA method), 52
_init_ () (ActiveWindowOverMaxStepSmooth __init__() (TriangleLinearize method), 50
method), 47 __init__() (ValveConfig method), 38
__init__() (ActiveWindowSmooth method), 46 —_init__() (ValveDataAccess_nc method), 38
__init__() (BarberClusterResult method), 39 __init__() (VectorLinearize method), 50
__init_ () (BasicPymolCGO method), 71 —init__() (WhereToCut method), 52
__init_ () (Bunch method), 68 __init__() (Window method), 58
__init__() (CTypeSpathsCollection method), 42 __init__() (WindowOverMaxStepSmooth method), 47
__init__() (CTypeSpathsCollectionWorker method), 41 —_init__ () (WindowSmooth method), 46
__init__() (Center method), 43 __init__() (arrayify method), 67

79



Aqua-Duct Documentation, Release 0.5.9

__init__() (fbom method), 62

__init__() (tictoc method), 62

__iter__() (SmartRange method), 69

__len__() (InletClusterGenericType method), 53

__len__() (SmartRange method), 69

__len__() (SmartRangeFunction method), 68

__repr__() (Auto method), 65

__repr__() (InletClusterGenericType method), 53

__repr__() (MasterReader method), 59

__repr__() (ReaderTraj method), 59

__repr__() (SimpleTree method), 64

__repr__() (SmartRange method), 69

__repr__() (SmartRangeFunction method), 68

__repr__() (Window method), 58

_ setstate__ () (MasterReader method), 59

_ str__() (Auto method), 65

__str__() (InletClusterGenericType method), 53

__str__() (PerformClustering method), 40

__str__() (SinglePathID method), 56

__str__() (SmartRange method), 69

__str__() (SmartRangeFunction method), 68

_coords() (SingleResidueSelection method), 61

_cut_thyself() (WhereToCut method), 52

_edges() (in module aquaduct.geom.convexhull), 40

_facets() (in module aquaduct.geom.convexhull), 40

_get_noclusters() (PerformClustering method), 40

_gpi() (GenericPaths method), 55

_gpo() (GenericPaths method), 55

_gpt() (GenericPaths method), 55

_make_smooth_coords() (MacroMolPath method), 57

_paths (MacroMolPath attribute), 57

_paths (PassingPath attribute), 58

_point_within_convexhull() (in
aquaduct.geom.convexhull), 40

_vertices_ids() (in module aquaduct.geom.convexhull),
40

module

_vertices_points() (in module
aquaduct.geom.convexhull), 40

A

ActiveWindowOverMaxStepSmooth (class in
aquaduct.geom.smooth), 47

ActiveWindowSmooth (class in

aquaduct.geom.smooth), 46
add() (BasicPymolCGOLines method), 71
add() (BasicPymolCGOSpheres method), 71
add() (Selection method), 60
add_012() (GenericPaths method), 55
add_cgo_object() (ConnectToPymol method), 71
add_cluster_annotations() (Inlets method), 54
add_cone() (BasicPymolCGOPointers method), 71
add_leaf() (SimpleTree method), 64
add_leaf_to_leaf() (SimpleTree method), 64
add_leaf_wrapper() (Inlets method), 54
add_message() (SimpleTree method), 64
add_message_to_leaf() (SimpleTree method), 64
add_message_wrapper() (Inlets method), 54
add_object() (GenericPaths method), 55

add_outliers_annotations() (Inlets method), 54
add_pointer() (BasicPymolCGOPointers method), 71
add_scope() (GenericPaths method), 55
add_single_path_continous_trace() (SinglePathPlotter
method), 72
add_spheres() (Inlets method), 54
add_spheres_from_inlets() (WhereToCut method), 52
add_spheres_from_spaths() (WhereToCut method), 52
add_type() (GenericPaths method), 55
add_width() (MasterPath method), 58
all_incoming (InletTypeCodes attribute), 53
all_internal (InletTypeCodes attribute), 53
all_outgoing (InletTypeCodes attribute), 53
all_surface (InletTypeCodes attribute), 53
and_back_again() (LinearizeHobbit method), 49
append() (FramesRangeCollection method), 61
append() (SmartRange method), 69
aquaduct (module), 73
aquaduct.apps (module), 39
aquaduct.apps.data (module), 37
aquaduct.apps.valvecore (module), 38
aquaduct.geom (module), 51
aquaduct.geom.cluster (module), 39
aquaduct.geom.convexhull (module), 40
aquaduct.geom.master (module), 41
aquaduct.geom.pca (module), 43
aquaduct.geom.smooth (module), 44
aquaduct.geom.traces (module), 47
aquaduct.traj (module), 61
aquaduct.traj.barber (module), 51
aquaduct.traj.dumps (module), 52
aquaduct.traj.inlets (module), 53
aquaduct.traj.paths (module), 55
aquaduct.traj.sandwich (module), 58
aquaduct.utils (module), 70
aquaduct.utils.clui (module), 61
aquaduct.utils.helpers (module), 65
aquaduct.utils.maths (module), 69
aquaduct.utils.multip (module), 70
aquaduct.visual (module), 73
aquaduct.visual.cmaps (module), 70
aquaduct.visual.helpers (module), 70
aquaduct.visual.pymol_cgo (module), 70
aquaduct.visual.pymol_connector (module), 70
aquaduct.visual.quickplot (module), 72
aquaduct_version_nice() (in
aquaduct.apps.valvecore), 39
are_rows_uniq() (in module aquaduct.utils.helpers), 65
arrayify (class in aquaduct.utils.helpers), 67
arrayify1() (in module aquaduct.utils.helpers), 67
arrays2dict() (IdsOverlds static method), 38
atom2residue() (ReaderTraj method), 60
atom2residue() (ReaderTrajViaMDA method), 60
atom_vdw() (ReaderTraj method), 60
atom_vdw() (ReaderTrajViaMDA method), 60
atoms_masses() (ReaderTraj method), 60
atoms_masses() (ReaderTrajViaMDA method), 60
atoms_positions() (ReaderTraj method), 60

module

80

Index



Aqua-Duct Documentation, Release 0.5.9

atoms_positions() (ReaderTrajViaMDA method), 60
AtomSelection (class in aquaduct.traj.sandwich), 60
Auto (class in aquaduct.utils.helpers), 65

B

baguette() (MasterReader method), 59

bar() (SimpleProgressBar method), 63

barber_with_spheres() (GenericPaths method), 56

BarberCluster (class in aquaduct.geom.cluster), 40

BarberClusterResult (class in aquaduct.geom.cluster),
39

barlenght (SimpleProgressBar attribute), 63

BasicPymolCGO (class in
aquaduct.visual.pymol_connector), 70
BasicPymolCGOLines (class in

aquaduct.visual.pymol_connector), 71
BasicPymolCGOPointers (class in
aquaduct.visual.pymol_connector), 71
BasicPymolCGOSpheres (class in
aquaduct.visual.pymol_connector), 71
beat() (CTypeSpathsCollection method), 42
begins (MacroMolPath attribute), 57
Bunch (class in aquaduct.utils.helpers), 68

C

cache (CoordsRangelndexCache attribute), 37

cachedir (GlobalConfigStore attribute), 37

cachemem (GlobalConfigStore attribute), 37

call_clusterization_method() (Inlets method), 54

cc() (in module aquaduct.visual.helpers), 70

cc_safe() (in module aquaduct.visual.helpers), 70

Center (class in aquaduct.geom.pca), 43

center_of mass() (AtomSelection method), 61

center_of_mass() (Selection method), 60

centers() (PerformClustering method), 40

cgo_entity_begin (BasicPymolCGO attribute), 70

cgo_entity_begin (BasicPymolCGOLines attribute), 71

cgo_entity_begin (BasicPymolCGOPointers attribute),
71

cgo_entity_begin (BasicPymolCGOSpheres attribute),
71

cgo_entity_end (BasicPymolCGO attribute), 71

cgo_entity_end (BasicPymolCGOLines attribute), 71

cgo_entity_end (BasicPymolCGOPointers attribute),
71

cgo_entity_end (BasicPymolCGOSpheres attribute), 71

cgo_line_width (ConnectToPymol attribute), 71

check_bounds_at_max_window_at_pos() (General-
Window method), 45

check_minmaxcuts() (WhereToCut method), 52

check_version_compliance() (in
aquaduct.apps.data), 37

check_versions() (in module aquaduct.apps.data), 37

chull() (AtomSelection method), 61

cityblock() (in module aquaduct.visual.helpers), 70

clean() (BasicPymolCGO method), 71

close() (TmpDumpWriterOfMDA method), 52

close() (ValveDataAccess_pickle method), 38

module

close_all() (ValveDataAccessRoots method), 38

close_trajectory() (ReaderTraj method), 59

close_trajectory() (ReaderTrajViaMDA method), 60

cloud_groups() (WhereToCut method), 52

cluster2str() (InletClusterGenericType static method),
53

cluster_name() (ValveConfig static method), 38

clusters_centers (Inlets attribute), 54

clusters_list (Inlets attribute), 54

clusters_size (Inlets attribute), 54

clusters_std (Inlets attribute), 54

color_codes() (in module aquaduct.visual.helpers), 70

color_distance() (ColorMapDistMap static method), 70

ColorMapDistMap (class in aquaduct.visual.helpers),
70

combine() (in module aquaduct.utils.helpers), 65

common_config_names() (ValveConfig static method),
38

common_traj_data_config_names() (ValveConfig static
method), 38

compress_zip() (in module aquaduct.utils.helpers), 68

concatenate() (in module aquaduct.utils.helpers), 68

ConnectToPymol (class in
aquaduct.visual.pymol_connector), 71

containing_residues() (AtomSelection method), 61

contains() (SmartRangeFunction method), 68

contains_residues() (AtomSelection method), 61

convert() (LoadDumpWrapper method), 37

convexhull() (SinglePathPlotter method), 72

coords (GenericPaths attribute), 55

coords (Inlets attribute), 54

coords (MacroMolPath attribute), 56

coords (PassingPath attribute), 58

coords() (AtomSelection method), 60

coords() (FakeSingleResidueSelection method), 43

coords() (ResidueSelection method), 61

coords() (Selection method), 60

coords() (SingleResidueSelection method), 61

coords_cont (MacroMolPath attribute), 56

coords_filo (MacroMolPath attribute), 56

coords_first_in (MacroMolPath attribute), 56

coords_first_in (PassingPath attribute), 58

coords_in (MacroMolPath attribute), 56

coords_last_out (MacroMolPath attribute), 56

coords_last_out (PassingPath attribute), 58

coords_object (MacroMolPath attribute), 56

coords_out (MacroMolPath attribute), 56

coords_range() (in module aquaduct.traj.sandwich), 61

coords_range_core() (in module
aquaduct.traj.sandwich), 61

coords_smooth() (FakeSingleResidueSelection
method), 43

coords_smooth() (SingleResidueSelection method), 61

coords_types_prob_widths() (CTypeSpathsCollection-
Worker method), 41

CoordsRangeIndexCache (class in aquaduct.apps.data),
37

correct_window() (MasterReader method), 59

Index

81



Aqua-Duct Documentation, Release 0.5.9

cpu_count (CpuThreadsCount attribute), 70
CpuThreadsCount (class in aquaduct.utils.multip), 70
create_tmpfile() (in module aquaduct.utils.helpers), 65
ct_file (ConnectToPymol attribute), 71
ct_pymol (ConnectToPymol attribute), 71
CTypeSpathsCollection (class in
aquaduct.geom.master), 41
CTypeSpathsCollectionWorker
aquaduct.geom.master), 41
cut_thyself() (WhereToCut method), 52

D

decode_color() (ConnectToPymol method), 71
del_cgo_object() (ConnectToPymol method), 71
derrivative() (in module aquaduct.geom.traces), 48
dict2arrays() (IdsOverlds static method), 38

diff() (in module aquaduct.geom.traces), 47
distance() (ColorMapDistMap method), 70

(class in

DistanceWindowOverMaxStepSmooth ~ (class  in
aquaduct.geom.smooth), 47
DistanceWindowSmooth (class in

aquaduct.geom.smooth), 46
dump() (ValveDataAccess_pickle method), 38
dump_config() (ValveConfig method), 39
dump_frames() (ReaderTraj method), 59
dump_frames() (TmpDumpWriterOfMDA method), 52
dump_frames_to_file() (ReaderTraj method), 60
dump_frames_to_file() (ReaderTrajViaMDA method),

60

E

emit_message_to_file_in_root_logger()
aquaduct.utils.clui), 61

empty_coords (MacroMolPath attribute), 56

ends (MacroMolPath attribute), 57

engine (MasterReader attribute), 59

engine_name (MasterReader attribute), 58

ETA() (SimpleProgressBar method), 63

etypes (MacroMolPath attribute), 57

etypes_cont (MacroMolPath attribute), 57

euclidean() (in module aquaduct.visual.helpers), 70

extend_inlets() (Inlets method), 54

F

f_like() (in module aquaduct.visual.helpers), 70

FakeSingleResidueSelection (class in
aquaduct.geom.master), 43

fbm (class in aquaduct.utils.clui), 62

find_paths() (GenericPaths method), 56

find_paths_types() (GenericPaths method), 56

finish() (SimpleProgressBar method), 64

first_element() (SmartRange method), 69

first_element() (SmartRangeFunction method), 68

fit() (BarberCluster method), 40

fit() (PerformClustering method), 40

float_default (NumpyDefaultsStorageTypes attribute),
69

FloatWindow (class in aquaduct.geom.smooth), 45

(in  module

frames (GenericPaths attribute), 55

FramesRangeCollection (class in
aquaduct.traj.sandwich), 61

full_size() (CTypeSpathsCollection method), 42

G

GeneralWindow (class in aquaduct.geom.smooth), 45
generic (InletClusterExtendedType attribute), 53
GenericPaths (class in aquaduct.traj.paths), 55
GenericPathTypeCodes (class in aquaduct.traj.paths),
55
get() (BasicPymolCGO method), 71
get() (SmartRange method), 69
get() (SmartRangeDecrement method), 69
get() (SmartRangeEqual method), 68
get() (SmartRangeFunction method), 68
get() (SmartRangeIncrement method), 69
get_acceleration_cont() (MacroMolPath method), 57
get_ax3d() (in module aquaduct.visual.quickplot), 72
get_chull() (Inlets method), 54
get_cluster_options() (ValveConfig method), 39
get_cmap() (in module aquaduct.visual.helpers), 70
get_common_traj_data() (ValveConfig method), 38
get_coords() (MacroMolPath method), 57
get_coords() (PassingPath method), 58
get_coords_cont() (MacroMolPath method), 57
get_cric_reader() (in module aquaduct.apps.data), 37
get_current_nr() (WhereToCut method), 52
get_default_config() (ValveConfig method), 39
get_distance_both_cont() (MacroMolPath method), 57
get_distance_cont() (MacroMolPath method), 57
get_distance_rev_cont() (MacroMolPath method), 57
get_flat_tree() (Inlets method), 54
get_general_comment() (ValveConfig method), 39
get_global_options() (ValveConfig method), 39
get_inlets() (MacroMolPath method), 56
get_inlets() (PassingPath method), 58
get_inlets_references() (Inlets method), 54
get_leaf() (SimpleTree method), 64
get_master_path() (CTypeSpathsCollection method),
43
get_object_from_name()
aquaduct.apps.data), 38
get_object_name() (in module aquaduct.apps.data), 38
get_paths_in() (GenericPaths method), 55
get_paths_out() (GenericPaths method), 56
get_ranges() (FramesRangeCollection method), 61
get_reader() (Selection method), 60
get_reader() (SingleResidueSelection method), 61
get_reader_by_id() (MasterReader method), 59
get_real() (Window method), 58
get_recluster_options() (ValveConfig method), 39
get_required_params() (in module
aquaduct.geom.cluster), 39
get_single_path_types() (GenericPaths method), 56
get_single_reader() (MasterReader method), 59
get_smooth_options() (ValveConfig method), 39
get_stage_options() (ValveConfig method), 39

(in module

82

Index



Aqua-Duct Documentation, Release 0.5.9

get_str_timestamp() (in module aquaduct.utils.clui), 64
get_variable() (ValveDataAccess_pickle method), 38
get_vda_reader() (in module aquaduct.apps.data), 37
get_velocity_cont() (MacroMolPath method), 57
global_name() (ValveConfig static method), 38
GlobalConfigStore (class in aquaduct.apps.data), 37
glue() (in module aquaduct.traj.paths), 55
greetings() (in module aquaduct), 73
gregorian_year_in_days (in
aquaduct.utils.clui), 62
grey (ColorMapDistMap attribute), 70
gsep() (in module aquaduct.utils.clui), 62
gtypes (MacroMolPath attribute), 57
gtypes (PassingPath attribute), 58
gtypes_cont (MacroMolPath attribute), 57

H

has_in (MacroMolPath attribute), 57

has_in (PassingPath attribute), 57
has_object (MacroMolPath attribute), 57
has_out (MacroMolPath attribute), 57
has_out (PassingPath attribute), 57
heartbeat() (SimpleProgressBar method), 64
here() (LinearizeOneWay method), 49
here() (LinearizeRecursive method), 50

ids() (Selection method), 60
IdsOverlds (class in aquaduct.apps.data), 38
incoming (ProtolnletTypeCodes attribute), 53
init_ax() (MPLTracePlotter method), 72
init_pymol() (ConnectToPymol method), 71
init_script() (ConnectToPymol method), 71
Inlet (class in aquaduct.traj.inlets), 53
inlet2sphere() (WhereToCut method), 52
InletClusterExtendedType (class in
aquaduct.traj.inlets), 53
InletClusterGenericType (class in aquaduct.traj.inlets),
53
Inlets (class in aquaduct.traj.inlets), 54
InletTypeCodes (class in aquaduct.traj.inlets), 53
input (InletClusterGenericType attribute), 53
int2range() (in module aquaduct.utils.helpers), 66
int_default (NumpyDefaultsStorageTypes attribute), 70
internal (ProtolnletTypeCodes attribute), 53
internal_incoming (InletTypeCodes attribute), 53
internal_outgoing (InletTypeCodes attribute), 53
IntWindow (class in aquaduct.geom.smooth), 45
is_frame_in() (MacroMolPath method), 56
is_frame_object() (MacroMolPath method), 56
is_frame_out() (MacroMolPath method), 56
is_frame_walk() (MacroMolPath method), 56
is_frame_walk() (PassingPath method), 57
is_iterable() (in module aquaduct.utils.helpers), 66
is_leaf() (SimpleTree method), 64
is_linear() (TriangleLinearize method), 50
is_linear() (VectorLinearize method), 50
is_linear_core() (VectorLinearize method), 50

module

is_number() (in module aquaduct.utils.helpers), 65
is_overlaping_with_cloud() (WhereToCut method), 52
is_passing() (MacroMolPath method), 56
is_passing() (PassingPath method), 57
is_passing() (SinglePath method), 57
is_point_within() (Sphere method), 52
is_point_within_convexhull() (in
aquaduct.geom.convexhull), 40
is_single() (MacroMolPath method), 56
is_single() (PassingPath method), 57
is_single() (SinglePath method), 57
is_sphere_cloud() (Sphere method), 52
is_sphere_within() (Sphere method), 52
isin() (SmartRange method), 69
isin() (SmartRangeDecrement method), 69
isin() (SmartRangeEqual method), 69
isin() (SmartRangeFunction method), 68
isin() (SmartRangelncrement method), 69
iterate() (MasterReader method), 59
iterate_or_die() (in module aquaduct.utils.helpers), 68
iterate_over_frames() (ReaderTraj method), 59
itype (InletTypeCodes attribute), 53
ix() (Selection method), 60

L

last_element() (SmartRange method), 69

last_element() (SmartRangeDecrement method), 69

last_element() (SmartRangeEqual method), 69

last_element() (SmartRangeFunction method), 68

last_element() (SmartRangelncrement method), 69

last_times() (SmartRange method), 69

layer() (Selection method), 60

leafs_names (SimpleTree attribute), 64

left() (in module aquaduct.traj.paths), 55

len() (Selection method), 60

len() (Window method), 58

length_step_std() (in module aquaduct.geom.traces), 48

lens() (CTypeSpathsCollection method), 42

lens_norm() (CTypeSpathsCollection method), 42

lens_real() (CTypeSpathsCollection method), 42

lim2clusters() (Inlets method), 54

lim2rnames() (Inlets method), 54

lim2spaths() (Inlets method), 54

lim2types() (Inlets method), 54

lim_to() (Inlets method), 54

limspaths2() (Inlets method), 54

lind() (in module aquaduct.utils.helpers), 65

LinearizeHobbit (class in aquaduct.geom.traces), 49

LinearizeHobbitTriangle (class in
aquaduct.geom.traces), 51

LinearizeHobbitVector (class in aquaduct.geom.traces),
51

LinearizeOneWay (class in aquaduct.geom.traces), 49

LinearizeOneWayTriangle (class in
aquaduct.geom.traces), 51

LinearizeOneWay Vector
aquaduct.geom.traces), 51

LinearizeRecursive (class in aquaduct.geom.traces), 49

module

(class in

Index

83



Aqua-Duct Documentation, Release 0.5.9

LinearizeRecursiveTriangle (class in
aquaduct.geom.traces), 51

LinearizeRecursive Vector (class in
aquaduct.geom.traces), 51

list_blocks_to_slices() (in module

aquaduct.utils.helpers), 67
listify() (in module aquaduct.utils.helpers), 67
load() (ValveDataAccess_pickle method), 38
load_config() (ValveConfig method), 39
load_cric() (in module aquaduct.apps.data), 37
load_pdb() (ConnectToPymol method), 72
LoadDumpWrapper (class in aquaduct.apps.data), 37

M

MacroMolPath (class in aquaduct.traj.paths), 56

make_color_triple() (BasicPymolCGO static method),
71

make_default_array() (in module aquaduct.utils.maths),
70

make_iterable() (in module aquaduct.utils.helpers), 68

make_val() (InletClusterGenericType method), 53

MasterPath (class in aquaduct.traj.paths), 58

MasterReader (class in aquaduct.traj.sandwich), 58

max() (SmartRange method), 69

max_frame (GenericPaths attribute), 55

max_window_at_pos() (General Window
method), 45

MaxStepSmooth (class in aquaduct.geom.smooth), 46

MeanShiftBandwidth() (in module
aquaduct.geom.cluster), 40

message() (in module aquaduct.utils.clui), 61

message_special() (in module aquaduct.utils.clui), 61

midpoints() (in module aquaduct.geom.traces), 47

mimic_old_var_name (ValveDataAccess_pickle
attribute), 37

min() (SmartRange method), 69

min_frame (GenericPaths attribute), 55

MPLTracePlotter (class in aquaduct.visual.quickplot),
72

static

N

names() (ResidueSelection method), 61

new() (BasicPymolCGO method), 71

next() (SimpleProgressBar method), 64

noaction() (in module aquaduct.utils.helpers), 67

Normalize (class in aquaduct.geom.pca), 43

number_of frames() (MasterReader method), 59

number_of_layers() (MasterReader method), 59

numbers() (Selection method), 60

NumpyDefaultsStorageTypes
aquaduct.utils.maths), 69

(class in

O

object_len (MacroMolPath attribute), 56
object_len (PassingPath attribute), 57

object_name (GenericPathTypeCodes attribute), 55
open() (SimpleTarWriteHelper method), 71

open() (ValveDataAccess_nc method), 38

open() (ValveDataAccess_pickle method), 38
open() (ValveDataAccessRoots method), 38
open_reader_traj (MasterReader attribute), 58
open_trajectory() (ReaderTraj method), 59
open_trajectory() (ReaderTrajViaMDA method), 60
orient_on() (ConnectToPymol method), 72
out_name (GenericPathTypeCodes attribute), 55
outgoing (ProtolnletTypeCodes attribute), 53
output (InletClusterGenericType attribute), 53
overlaps() (SmartRangeFunction method), 68
overlaps_mutual() (SmartRangeFunction method), 68

P

P (PCA attribute), 44

parse_selection() (ReaderTraj method), 60
parse_selection() (ReaderTrajViaMDA method), 60
part2type_dict (in module aquaduct.geom.master), 41
parts (CTypeSpathsCollection attribute), 42

parts (in module aquaduct.geom.master), 41
PassingPath (class in aquaduct.traj.paths), 57
path (PassingPath attribute), 58

path_in (MacroMolPath attribute), 56
path_in_code (PathTypesCodes attribute), 55
path_object (MacroMolPath attribute), 56
path_object_code (PathTypesCodes attribute), 55
path_out (MacroMolPath attribute), 56
path_out_code (PathTypesCodes attribute), 55
path_trace() (SimpleTracePlotter method), 72
path_walk_code (PathTypesCodes attribute), 55
paths (MacroMolPath attribute), 57

paths (PassingPath attribute), 58

paths_cont (MacroMolPath attribute), 57
paths_first_in (MacroMolPath attribute), 56
paths_first_in (PassingPath attribute), 58
paths_inlets() (SinglePathPlotter method), 72
paths_last_out (MacroMolPath attribute), 56
paths_last_out (PassingPath attribute), 58
paths_trace() (SinglePathPlotter method), 72
PathTypesCodes (class in aquaduct.traj.paths), 55
pbar (in module aquaduct.utils.clui), 64

PCA (class in aquaduct.geom.pca), 44

percent() (SimpleProgressBar method), 64
perform_clustering() (Inlets method), 54
perform_reclustering() (Inlets method), 54
PerformClustering (class in aquaduct.geom.cluster), 40

plot_colorful_lines() (in module
aquaduct.visual.quickplot), 72

plot_line() (MPLTracePlotter method), 72

plot_line() (SimpleTracePlotter method), 72

plot_spath_spectrum() (in module

aquaduct.visual.quickplot), 72
preprocess() (PCA method), 44
preprocess_undo() (PCA method), 44
print_simple_tree() (in module aquaduct.utils.clui), 64
protein_trace() (SimpleProteinPlotter method), 72
ProtolnletTypeCodes (class in aquaduct.traj.inlets), 53

84

Index



Aqua-Duct Documentation, Release 0.5.9

R

range() (Window method), 58

range2int() (in module aquaduct.utils.helpers), 66

raw (SmartRange attribute), 69

read() (LoadDumpWrapper method), 37

reader (ReaderAccess attribute), 59

ReaderAccess (class in aquaduct.traj.sandwich), 59

ReaderTraj (class in aquaduct.traj.sandwich), 59

ReaderTrajViaMDA (class in aquaduct.traj.sandwich),
60

readline() (LoadDumpWrapper method), 37

real_number_of_frames() (MasterReader method), 59

real_number_of_frames() (ReaderTraj method), 59

real_number_of_ frames() (ReaderTrajViaMDA
method), 60

recluster_cluster() (Inlets method), 54

recluster_name() (ValveConfig static method), 38

recluster_outliers() (Inlets method), 54

recursive_clusterization_name() (ValveConfig static
method), 38

recursive_threshold_name() (ValveConfig static
method), 38

refs (Inlets attribute), 54

refs_names (Inlets attribute), 54
renumber_clusters() (Inlets method), 54

residues() (AtomSelection method), 60
residues_names() (ReaderTraj method), 60
residues_names() (ReaderTrajViaMDA method), 60
residues_positions() (ReaderTraj method), 60
residues_positions() (ReaderTrajViaMDA method), 60
ResidueSelection (class in aquaduct.traj.sandwich), 61
resize_leaf_0() (Inlets method), 54

rev() (SmartRange method), 69

rev() (SmartRangeDecrement method), 69

rev() (SmartRangeEqual method), 69

rev() (SmartRangeFunction method), 68

rev() (SmartRangelncrement method), 69

right() (in module aquaduct.traj.paths), 55
robust_and() (in module aquaduct.utils.helpers), 65
robust_or() (in module aquaduct.utils.helpers), 65
roman_emulation (class in aquaduct.utils.clui), 61
roots (ValveDataAccessRoots attribute), 38

rotate (SimpleProgressBar attribute), 63

S

sandwich() (MasterReader method), 59
sandwich_mode (MasterReader attribute), 58
save_config() (ValveConfig method), 39
save_config_stream() (ValveConfig method), 39
save_cric() (in module aquaduct.apps.data), 37
save_file2tar() (SimpleTarWriteHelper method), 71
save_object2tar() (SimpleTarWriteHelper method), 71
SavgolSmooth (class in aquaduct.geom.smooth), 46
scatter() (MPLTracePlotter method), 73

scatter() (SinglePathPlotter method), 72
scope_name (GenericPathTypeCodes attribute), 55
Selection (class in aquaduct.traj.sandwich), 60
set_frame() (ReaderTraj method), 59

set_real_frame() (ReaderTraj method), 59

set_real_frame() (ReaderTrajViaMDA method), 60

set_savgol_function() (SavgolSmooth method), 47

set_variable() (ValveDataAccess_pickle method), 38

show() (SimpleProgressBar method), 64

showit() (in module aquaduct.visual.quickplot), 72

simple_types_distribution()  (CTypeSpathsCollection
static method), 42

SimplePathPlotter (class in aquaduct.visual.quickplot),

72
SimpleProgressBar (class in aquaduct.utils.clui), 63
SimpleProteinPlotter (class in
aquaduct.visual.quickplot), 72
SimpleTarWriteHelper (class in
aquaduct.visual.pymol_connector), 71
SimpleTracePlotter (class in

aquaduct.visual.quickplot), 72

SimpleTree (class in aquaduct.utils.clui), 64

single_path_traces() (SimplePathPlotter method), 72

single_residues() (ResidueSelection method), 61

single_trace() (SimpleTracePlotter method), 72

SinglePath (class in aquaduct.traj.paths), 57

SinglePathID (class in aquaduct.traj.paths), 56

SinglePathPlotter (class in
aquaduct.visual.pymol_connector), 72

SingleResidueSelection (class in
aquaduct.traj.sandwich), 61

size (Inlets attribute), 54

size (MacroMolPath attribute), 57

sizes (MacroMolPath attribute), 57

sizes (PassingPath attribute), 58

small_clusters_to_outliers() (Inlets method), 54

smart_time_string() (in module aquaduct.utils.clui), 62

SmartRange (class in aquaduct.utils.helpers), 69

SmartRangeDecrement (class in
aquaduct.utils.helpers), 69

SmartRangeEqual (class in aquaduct.utils.helpers), 68

SmartRangeFunction (class in aquaduct.utils.helpers),
68

SmartRangelncrement (class in aquaduct.utils.helpers),
69

Smooth (class in aquaduct.geom.smooth), 44

smooth() (ActiveWindowOverMaxStepSmooth
method), 47

smooth() (ActiveWindowSmooth method), 46

smooth() (DistanceWindowOverMaxStepSmooth
method), 47

smooth() (DistanceWindowSmooth method), 46

smooth() (MaxStepSmooth method), 46

smooth() (SavgolSmooth method), 47

smooth() (Smooth method), 44

smooth() (WindowOverMaxStepSmooth method), 47

smooth() (WindowSmooth method), 46

smooth_coords_ranges() (in
aquaduct.traj.sandwich), 61

smooth_name() (ValveConfig static method), 38

sort_clusters() (Inlets method), 54

sortify() (in module aquaduct.utils.helpers), 66

module

Index

85



Aqua-Duct Documentation, Release 0.5.9

spath2ctype() (Inlets method), 54

spath2spheres() (WhereToCut method), 52

spath_spectrum() (in
aquaduct.visual.quickplot), 72

spaths2ctypes() (Inlets method), 54

spaths_spectra() (in module aquaduct.visual.quickplot),
72

Sphere (class in aquaduct.traj.barber), 51

split_list() (in module aquaduct.utils.helpers), 68

stage_I_run() (in module aquaduct.apps.valvecore), 39

stage_II_run() (in module aquaduct.apps.valvecore), 39

stage_III_run() (in module aquaduct.apps.valvecore),
39

stage_IV_run() (in module aquaduct.apps.valvecore),
39

stage_names() (ValveConfig method), 38

stage_V_run() (in module aquaduct.apps.valvecore), 39

stage_VI_run() (in module aquaduct.apps.valvecore),
39

Standartize (class in aquaduct.geom.pca), 44

strech_zip() (in module aquaduct.utils.helpers), 68

surface (ProtolnletTypeCodes attribute), 53

surface_incoming (InletTypeCodes attribute), 53

surface_outgoing (InletTypeCodes attribute), 53

T

thead() (in module aquaduct.utils.clui), 63

threads_count (CpuThreadsCount attribute), 70

tictoc (class in aquaduct.utils.clui), 62

TmpDumpWriterOfMDA (class in
aquaduct.traj.dumps), 52

topology (MasterReader attribute), 58

toRoman() (roman_emulation method), 61

tracepoints() (in module aquaduct.geom.traces), 47

trajectory (MasterReader attribute), 58

triangle_angles() (in module aquaduct.geom.traces), 48

triangle_angles_last() (in module
aquaduct.geom.traces), 48

triangle_height() (in module aquaduct.geom.traces), 48

TriangleLinearize (class in aquaduct.geom.traces), 50

tsep() (in module aquaduct.utils.clui), 63

ttime() (SimpleProgressBar method), 64

tupleify() (in module aquaduct.utils.helpers), 67

type (SmartRangeDecrement attribute), 69

type (SmartRangeEqual attribute), 68

type (SmartRangelncrement attribute), 69

types (GenericPaths attribute), 55

types (Inlets attribute), 54

types (MacroMolPath attribute), 57

types (PassingPath attribute), 58

types_cont (MacroMolPath attribute), 57

types_distribution() (CTypeSpathsCollection method),
43

types_in (MacroMolPath attribute), 56

types_object (MacroMolPath attribute), 56

types_out (MacroMolPath attribute), 56

types_prob_to_types() (CTypeSpathsCollection
method), 43

module

U

underline() (in module aquaduct.utils.clui), 63

undo() (Center method), 43

undo() (Normalize method), 44

undo() (PCA method), 44

undo() (Standartize method), 44

union() (in module aquaduct.traj.paths), 55

union_full() (in module aquaduct.traj.paths), 55

union_smartr() (in module aquaduct.traj.paths), 55

uniqify() (in module aquaduct.utils.helpers), 67

uniquify() (Selection method), 60

unknown_names (ValveDataAccess_pickle attribute),
38

update() (CTypeSpathsCollection method), 42

update() (SimpleProgressBar method), 64

\Y

valve_begin() (in module aquaduct.apps.valvecore), 39
valve_end() (in module aquaduct.apps.valvecore), 39

valve_exec_stage() (in module
aquaduct.apps.valvecore), 39
valve_load_config() (in module

aquaduct.apps.valvecore), 39
ValveConfig (class in aquaduct.apps.valvecore), 38
ValveDataAccess (in module aquaduct.apps.data), 38
ValveDataAccess_nc (class in aquaduct.apps.data), 38
ValveDataAccess_pickle (class in aquaduct.apps.data),
37
ValveDataAccessRoots (class in aquaduct.apps.data),
38
vdw() (AtomSelection method), 60
VdW _radii (in module aquaduct.traj.sandwich), 59
vector_norm() (in module aquaduct.geom.traces), 48
VectorLinearize (class in aquaduct.geom.traces), 50
vectors_angle() (in module aquaduct.geom.traces), 48
vectors_angle_alt() (in module aquaduct.geom.traces),
49

vectors_angle_alt_anorm() (in module
aquaduct.geom.traces), 49
vectors_angle_anorm() (in module

aquaduct.geom.traces), 49
version() (in module aquaduct), 73
version_nice() (in module aquaduct), 73

W

what2what() (in module aquaduct.utils.helpers), 68
WhereToCut (class in aquaduct.traj.barber), 52
Window (class in aquaduct.traj.sandwich), 58
window (MasterReader attribute), 58
WindowOverMaxStepSmooth
aquaduct.geom.smooth), 47
WindowSmooth (class in aquaduct.geom.smooth), 45

X

xor() (in module aquaduct.traj.paths), 55
xor_full() (in module aquaduct.traj.paths), 55
xor_smartr() (in module aquaduct.traj.paths), 55

(class in

86

Index



Aqua-Duct Documentation, Release 0.5.9

xzip_xzip() (in module aquaduct.utils.helpers), 68

Y

yield_generic_paths() (in module aquaduct.traj.paths),
56

yield_single_paths() (in module aquaduct.traj.paths),
56

yield_spath_len_and_smooth_diff_in_types_slices()
(in module aquaduct.visual.quickplot), 72

Z

zip_zip() (in module aquaduct.utils.helpers), 68

Index 87



	Aqua-Duct installation guide
	Overview
	Troubleshooting
	Requirements
	Software-wise requirements
	Hardware-wise requirements

	Installation
	Generic Python installation
	GNU/Linux
	macOS
	Windows
	OpenBSD


	Valve manual
	Valve invocation
	Usage
	Configuration file template
	Valve calculation run

	How does Valve work
	Traceable residues
	Raw paths
	Separate paths
	Clusterization of inlets
	Passing paths
	Analysis
	Visualization


	Configuration file options
	Section global
	Common settings of stage sections
	Stage traceable_residues
	Stage raw_paths
	Stage separate_paths
	Stage inlets_clusterization
	Stage analysis
	Stage visualize
	Clusterization sections
	barber
	dbscan
	affprop
	meanshift
	birch
	kmeans

	Smooth section

	Valve tutorial
	Valve invocation
	Test data
	Inspect your system
	Create Object definition
	Create Scope definition

	Prepare config file
	Run Valve
	Visual inspection
	Clusterization
	Analysis tables

	Feedback

	aquaduct
	aquaduct package
	Subpackages
	Module contents


	Aqua-Duct changelog
	Python Module Index
	Index

